python与深度学习(十四):CNN和IKUN模型二
目录
- 1. 说明
- 2. IKUN模型的CNN模型测试
- 2.1 导入相关库
- 2.2 加载模型
- 2.3 设置保存图片的路径
- 2.4 加载图片
- 2.5 图片预处理
- 2.6 对图片进行预测
- 2.7 显示图片
- 3. 完整代码和显示结果
- 4. 多张图片进行测试的完整代码以及结果
1. 说明
本篇文章是对上篇文章猫狗大战训练的模型进行测试。首先是将训练好的模型进行重新加载,然后采用opencv对图片进行加载,最后将加载好的图片输送给模型并且显示结果。
2. IKUN模型的CNN模型测试
2.1 导入相关库
在这里导入需要的第三方库如cv2,如果没有,则需要自行下载,自行下载时候一般建议镜像源,这样下载的快。
from tensorflow import keras
import skimage, os, sys, cv2
from PIL import ImageFont, Image, ImageDraw # PIL就是pillow包(保存图像)
import numpy as np
# 导入tensorflow
import tensorflow as tf
# 导入keras
from tensorflow import keras
2.2 加载模型
把训练好的模型也加载进来,这里不用加载数据,因为数据是自制的。
# 加载my_ikun.h5文件,重新生成模型对象
recons_model = keras.models.load_model('my_ikun.h5')
2.3 设置保存图片的路径
将数据集的某个数据以图片的形式进行保存,便于测试的可视化,这里在之前已经分了测试集,因此设置图片路径即可。
在这里设置图片存储的位置,便于将图片进行存储。
# 创建图片保存路径
test_file_path = os.path.join(sys.path[0], 'imgs', 'test1', '4.jpg')
上述代码是将test文件夹里面的4.jpg进行测试,如果想测试其它的只需改为x.jpg即可。

2.4 加载图片
采用cv2对图片进行加载,用opencv库也就是cv2读取图片的时候,图片是三通道的,而训练的模型是三通道的,因此不只用取单通道,而是三通道,这里和之前的灰度图不同。
# 加载本地test.png图像
image = cv2.imread(test_file_path)
# 复制图片
test_img = image.copy()
# 将图片大小转换成(150,150)
test_img = cv2.resize(test_img, (150,150))
2.5 图片预处理
对图片进行预处理,即进行归一化处理和改变形状处理,这是为了便于将图片输入给训练好的模型进行预测。因此在这里将形状改变为1501503的,前面的1是样本数,所以是(1,150,150,3)。
# 预处理: 归一化 + reshape
new_test_img = (test_img/255.0).reshape(1, 150,150, 3)
2.6 对图片进行预测
将图片输入给训练好我的模型并且进行预测。
因为是二分类,所以预测的结果是1个概率值,所以需要进行处理, 大于0.5的是坤坤,小于0.5的是鸡。
# 预测
y_pre_pro = recons_model.predict(new_test_img, verbose=1)
# 哪一类
class_id = np.argmax(y_pre_pro, axis=1)[0]
print('test.png的预测概率:', y_pre_pro)
print('test.png的预测概率:', y_pre_pro[0, class_id])
if y_pre_pro[0, class_id] > 0.5:print('png的所属类别:', '坤哥')
else:print('png的所属类别:', '鸡哥')
2.7 显示图片
对预测的图片进行显示,把预测的数字显示在图片上。
下面5行代码分别是创建窗口,设定窗口大小,显示图片,停留图片,清除内存。
# # 显示
cv2.namedWindow('img', 0)
cv2.resizeWindow('img', 500, 500) # 自己设定窗口图片的大小
cv2.imshow('img', image)
cv2.waitKey()
cv2.destroyAllWindows()
3. 完整代码和显示结果
以下是完整的代码和图片显示结果。
from tensorflow import keras
import skimage, os, sys, cv2
from PIL import ImageFont, Image, ImageDraw # PIL就是pillow包(保存图像)
import numpy as np
# 导入tensorflow
import tensorflow as tf
# 导入keras
from tensorflow import keras# 加载my_ikun.h5文件,重新生成模型对象
recons_model = keras.models.load_model('my_ikun.h5')
# 创建图片保存路径
test_file_path = os.path.join(sys.path[0], 'imgs', 'test1', '4.jpg')
# 加载本地test.png图像
image = cv2.imread(test_file_path)
# 复制图片
test_img = image.copy()
# 将图片大小转换成(150,150)
test_img = cv2.resize(test_img, (150,150))
# 预处理: 归一化 + reshape
new_test_img = (test_img/255.0).reshape(1, 150,150, 3)
# 预测
y_pre_pro = recons_model.predict(new_test_img, verbose=1)
# 哪一类
class_id = np.argmax(y_pre_pro, axis=1)[0]
print('test.png的预测概率:', y_pre_pro)
print('test.png的预测概率:', y_pre_pro[0, class_id])
if y_pre_pro[0, class_id] > 0.5:print('png的所属类别:', '坤哥')
else:print('png的所属类别:', '鸡哥')
# # 显示
cv2.namedWindow('img', 0)
cv2.resizeWindow('img', 500, 500) # 自己设定窗口图片的大小
cv2.imshow('img', image)
cv2.waitKey()
cv2.destroyAllWindows()
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
1/1 [==============================] - 0s 315ms/step
test.png的预测概率: [[1.]]
test.png的预测概率: 1.0
png的所属类别: 坤哥

4. 多张图片进行测试的完整代码以及结果
为了测试更多的图片,引入循环进行多次测试,效果更好。
from tensorflow import keras
import skimage, os, sys, cv2
from PIL import ImageFont, Image, ImageDraw # PIL就是pillow包(保存图像)
import numpy as np# 加载my_ikun.h5文件,重新生成模型对象
recons_model = keras.models.load_model('my_ikun.h5')prepicture = int(input("input the number of test picture :"))
for i in range(prepicture):path1 = input("input the test picture path:")# 创建图片保存路径test_file_path = os.path.join('imgs', 'test1', path1)# 加载本地test.png图像image = cv2.imread(test_file_path)# 复制图片test_img = image.copy()# 将图片大小转换成(150,150)test_img = cv2.resize(test_img, (150, 150))# 预处理: 归一化 + reshapenew_test_img = (test_img / 255.0).reshape(1, 150, 150, 3)# 预测y_pre_pro = recons_model.predict(new_test_img, verbose=1)# 哪一类数字class_id = np.argmax(y_pre_pro, axis=1)[0]print('test.png的预测概率:', y_pre_pro)print('test.png的预测概率:', y_pre_pro[0, class_id])if y_pre_pro[0, class_id] > 0.5:print('png的所属类别:', '坤哥')else:print('png的所属类别:', '鸡哥')# # 显示cv2.namedWindow('img', 0)cv2.resizeWindow('img', 500, 500) # 自己设定窗口图片的大小cv2.imshow('img', image)cv2.waitKey()cv2.destroyAllWindows()
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
input the number of test picture :2
input the test picture path:3.jpg
1/1 [==============================] - 0s 170ms/step
test.png的预测概率: [[0.99739295]]
test.png的预测概率: 0.99739295
png的所属类别: 坤哥

input the test picture path:10.jpg
1/1 [==============================] - 0s 163ms/step
test.png的预测概率: [[0.09064844]]
test.png的预测概率: 0.09064844
png的所属类别: 鸡哥

相关文章:
python与深度学习(十四):CNN和IKUN模型二
目录 1. 说明2. IKUN模型的CNN模型测试2.1 导入相关库2.2 加载模型2.3 设置保存图片的路径2.4 加载图片2.5 图片预处理2.6 对图片进行预测2.7 显示图片 3. 完整代码和显示结果4. 多张图片进行测试的完整代码以及结果 1. 说明 本篇文章是对上篇文章猫狗大战训练的模型进行测试。…...
chrome扩展在popup、background、content之间通信解决传输文件问题
文章目录 背景介绍案例介绍代码示例popup页面,上传文件页面popup页面,js上传代码,file文件转base64background监听消息,base64转file文件,axios上传 附-转base64后直接下载 背景介绍 示例扩展API版本MV2。 以弹…...
Oracle获取创建对象的DDL脚本
Oracle获取创建对象的DDL脚本 Oracle获取创建对象的DDL脚本查看 dbms_metadata.get_ddl()函数的定义 Oracle获取创建对象的DDL脚本 例如,对tzq schema下的表 test2,查看DDL脚本的SQL如下: SELECT SELECT dbms_metadata.get_ddl(upper(table…...
《算法竞赛·快冲300题》每日一题:“01树”
《算法竞赛快冲300题》将于2024年出版,是《算法竞赛》的辅助练习册。 所有题目放在自建的OJ New Online Judge。 用C/C、Java、Python三种语言给出代码,以中低档题为主,适合入门、进阶。 文章目录 题目描述题解C代码Java代码Python代码 “ 0…...
Mac提示文件:已损坏,无法打开。你应该把它移到废纸篓
文章目录 一、电脑信息二、打开任何来源设置三、更改应用程序拓展属性 一、电脑信息 我的是新版的Venture 13的系统。UI改的比较多。与之前的配置还是有很大的区别的。 打开下载的软件,显示已经损坏,打不开。抛开软件本身的问题外,一般是Ma…...
探索嵌入式系统:从入门到实践
随着科技的飞速发展,嵌入式系统已经成为了我们生活中不可或缺的一部分。从智能手机、智能家居到工业自动化设备,嵌入式系统的应用已经渗透到了各个领域。那么,如何学习嵌入式系统呢?本文将从入门到实践,为你详细解答。…...
网络安全知识点整理(作业2)
目录 一、js函数声明->function 第一种 第二种 第三种 二、this关键字 this使用场合 1.全局环境 2.构造函数 3.对象的方法 避免多层this 三、js的同步与异步 定时器 setTimeout和setInterval 同步与异步的例子 四、宏任务与微任务 分辨宏任务与微任务 一、js…...
idea数据库快速上手-库操作与表结构和数据操作
引言 对数据库的操作无非就是执行SQL语句,要想熟练操作数据库,就要熟练运用SQL语句。 一,数据库操作 展示当前服务器内的数据库 -- 展示服务器内的数据库 show databases; show schemas; 执行结果: 创建数据库: --…...
当“国潮”遇见“双语” 以传承之心种下一颗文化的种子
看,活灵活现的纸片人在“跳舞”。光影的辉映下,两个形神兼备的“齐天大圣”究竟孰真孰假?舞台上,京西皮影非遗传承人王熙和5岁的Mona小朋友正在用双语为大家带来一段“真假美猴王”的好戏。生动的皮影造型和精彩的故事演绎看得台下…...
计划管理与项目管理:有何区别?
简而言之,是的。尽管它们经常互换使用并对全局产生影响,但它们是完全不同的。 在本文中,我们将了解计划和项目管理之间的差异,提供每个示例,并向您展示如何使计划和项目管理工作更有效地实现您的业务目标。 计划管理与…...
个人信息保护合规审计如何做?
8月3日,为指导、规范个人信息保护合规审计活动,根据《中华人民共和国个人信息保护法》等法律法规,国家互联网信息办公室就《个人信息保护合规审计管理办法(征求意见稿)》(简称《办法》)及配套的…...
HTTP杂谈之Referer和Origin请求头再探
一 关于Referer和Origin的汇总 1) 知识是凌乱的,各位看官看个热闹即可2) 内容不断更新1、理解有盲区,需要及时纠正2、内容交叉有重复,需要适当删减3、扩展视野3) 以下内容都与Referer和Origin请求头有关联 nginx防盗链 HTTP杂谈之Referrer-Policy响应头 iframe标签referre…...
数学建模-爬虫入门
Python快速入门 简单易懂Python入门 爬虫流程 获取网页内容:HTTP请求解析网页内容:Requst库、HTML结果、Beautiful Soup库储存和分析数据 什么是HTTP请求和响应 如何用Python Requests发送请求 下载pip macos系统下载:pip3 install req…...
HSRM各表
文章目录 表规则接口种类服务与网关路由菜单一、采购申请1、采购申请—查询2、采购申请-操作记录二、采购申请跟踪报表1、采购申请跟踪报表—列表查询三、寻源1、寻源大厅—列表查询2、寻源大厅—询价单明细3、寻源大厅—物料明细4、寻源大厅—供应商列表5、寻源模板—列表查询…...
Ansible自动化运维工具 —— Playbook 剧本
playbooks 本身由以下各部分组成 (1)Tasks:任务,即通过 task 调用 ansible 的模板将多个操作组织在一个 playbook 中运行 (2)Variables:变量 (3)Templates:模…...
第二章:多态
系列文章目录 文章目录 系列文章目录前言多态的概念概念 多态的定义及实现多态的构成条件虚函数虚函数的重写C11 override 和 final重载、覆盖(重写)、隐藏(重定义)的对比 抽象类概念接口继承和实现继承 多态的原理虚函数表多态的原理动态绑定与静态绑定 单继承和多继承关系的虚…...
C++面向对象设计基础
一般类、&、const、模板、友元函数、操作符重载基本用法及实现 complex.h #ifndef COMPLEX_H #define COMPLEX_H #include<ostream> using namespace std;template<typename T> class Complex{public:Complex():re(0),img(0){}// 为什么构造函数不能传引用&a…...
Linux定时运行sh脚本,如果sh文件已经在运行,则忽略本次运行
需求来源 我需要linux的crontab定期每10分钟运行lan.sh脚本。但由于lan.sh运行需要较长时间,有时超过10分钟。这样会导致系统多次运行lan.sh脚本,引发运行堆积,导致一些非必要的错误。 解决方法 解决方法是写一个脚本,如果lan.…...
SpringBoot项目中的web安全防护
最近这个月公司对项目进行了几次安全性扫描,然后扫描出来了一些安全漏洞,所以最近也一直在修复各种安全漏洞,还有就是最近在备考软考高级系统架构设计师,也刚好复习到了网络安全这一个章节,顺便将最近修复的安全漏洞总…...
stm32和python串口数据收发
1-1 串口发送端(stm32) 1字符串发送 void USART_SendData(USART_TypeDef* USARTx, uint16_t Data) {/* Check the parameters */assert_param(IS_USART_ALL_PERIPH(USARTx));assert_param(IS_USART_DATA(Data)); /* Transmit Data */USARTx->DR (D…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...
STM32F4基本定时器使用和原理详解
STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...
srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...
如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
.Net Framework 4/C# 关键字(非常用,持续更新...)
一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...
C语言中提供的第三方库之哈希表实现
一. 简介 前面一篇文章简单学习了C语言中第三方库(uthash库)提供对哈希表的操作,文章如下: C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...
实战设计模式之模板方法模式
概述 模板方法模式定义了一个操作中的算法骨架,并将某些步骤延迟到子类中实现。模板方法使得子类可以在不改变算法结构的前提下,重新定义算法中的某些步骤。简单来说,就是在一个方法中定义了要执行的步骤顺序或算法框架,但允许子类…...
boost::filesystem::path文件路径使用详解和示例
boost::filesystem::path 是 Boost 库中用于跨平台操作文件路径的类,封装了路径的拼接、分割、提取、判断等常用功能。下面是对它的使用详解,包括常用接口与完整示例。 1. 引入头文件与命名空间 #include <boost/filesystem.hpp> namespace fs b…...
