当前位置: 首页 > news >正文

【图像去噪】基于原始对偶算法优化的TV-L1模型进行图像去噪研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码及文章讲解


💥1 概述

参考文献:

基于对偶算法优化的TV-L1模型是一种常用的图像去噪方法,它结合了全变差(Total Variation, TV)正则化和L1范数正则化,能够有效地去除图像中的噪声并保持图像的细节信息。

TV-L1模型的基本形式为:

minimize ||u-f||^2 + λ * TV(u)

其中,u表示待去噪的图像,f表示带噪图像,TV(u)表示全变差正则化项,λ表示正则化参数,控制去噪和平滑程度。

对偶算法是一种常用的优化方法,用于求解TV-L1模型。该算法的基本思想是将TV-L1模型转化为对偶问题,并通过迭代求解对偶问题的一系列子问题,逐步优化图像的去噪结果。

对偶算法优化的TV-L1模型的步骤如下:

1. 初始化:
   随机初始化待去噪图像u。

2. 计算梯度:
   计算待去噪图像u的梯度。

3. 更新对偶变量:
   根据梯度和当前的对偶变量值,更新对偶变量。

4. 项目约束:
   对更新的对偶变量进行约束处理,确保在一定范围内。

5. 更新原始变量:
   根据更新的对偶变量和带噪图像,更新原始变量。

6. 迭代迭代收敛:
   重复执行步骤3至步骤5,直至满足迭代收敛条件。

7. 输出结果:
   输出优化后的图像u作为最终的去噪结果。

通过对偶算法优化的TV-L1模型,可以在保持图像细节的同时,有效地去除图像中的噪声。然而,该方法在迭代过程中可能需要较长的时间来达到较好的去噪效果,而且对正则化参数的选择也较为敏感。因此,在实际应用中需要根据具体情况进行调整和优化,以获得最佳的图像去噪结果。

详细讲解见第4部分。

📚2 运行结果

 

 部分代码:

% projection
    % compute gradient in ux, uy
    %[ux, uy]=imgradientxy(u, 'IntermediateDifference');
    ux=u(:, [2:width, width]) - u;
    uy=u([2:height, height], :) - u;
    p=p + sigma*cat(3, ux, uy);
    % project
    normep=max(1, sqrt(p(:, :, 1).^2 + p(:, :, 2).^2)); 
    p(:, :, 1)=p(:, :, 1)./normep;
    p(:, :, 2)=p(:, :, 2)./normep;

    % shrinkage
    % compute divergence in div
    div=[p([1:height-1], :, 2); zeros(1, width)] - [zeros(1, width); p([1:height-1], :, 2)];
    div=[p(:, [1:width-1], 1)  zeros(height, 1)] - [zeros(height, 1)  p(:, [1:width-1], 1)] + div;

    %% TV-L2 model
    %unew=(u + tau*div + lt*nim)/(1+tau);

    % TV-L1 model
    v=u + tau*div;
    unew=(v-lt).*(v-nim>lt) + (v+lt).*(v-nim<-lt) + nim.*(abs(v-nim)<=lt);
    %if(v-nim>lt); unew=v-lt; elseif(v-nim<-lt) unew=v+lt; else unew=nim; end

    % extragradient step
    u=unew + theta*(unew-u);

    %% energy being minimized
    % ux=u(:, [2:width, width]) - u;
    % uy=u([2:height, height], :) - u;
    % E=sum(sqrt(ux(:).^2 + uy(:).^2)) + lambda*sum(abs(u(:) - nim(:)));
    % fprintf('Iteration %d: energy %g\n', k, E);

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]徐静,刘俊皓.一种改进的原始对偶法求解TV-L1图像去噪模型[J].应用数学学报,2020,43(04):684-699.

[2]娄伟,钟彩,张观山.基于L1-L2范数的正则项去噪模型的PCB图像去噪算法研究[J].光电子·激光,2020,31(02):168-174.DOI:10.16136/j.joel.2020.02.0310.

[3]娄伟,钟彩,张观山.基于L1-L2范数的正则项去噪模型的PCB图像去噪算法研究[J].光电子·激光,2020,31(02):168-174.DOI:10.16136/j.joel.2020.02.0310.

🌈4 Matlab代码及文章讲解

相关文章:

【图像去噪】基于原始对偶算法优化的TV-L1模型进行图像去噪研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

RISC-V基础之函数调用(五)函数递归调用及函数参数数量溢出(超出现有寄存器个数)约定(包含实例)

首先先解释一下栈在函数调用中的作用&#xff0c;更详细的部分请参照考研复习之数据结构笔记&#xff08;五&#xff09;栈和队列&#xff08;上&#xff09;&#xff08;包含栈的相关内容&#xff09;_管二狗赶快去工作&#xff01;的博客-CSDN博客 函数嵌套调用栈的作用是用…...

力扣:48. 旋转图像(Python3)

题目&#xff1a; 给定一个 n n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。 你必须在 原地 旋转图像&#xff0c;这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。 来源&#xff1a;力扣&#xff08;LeetCode&#xff09; 链接&…...

HarmonyOS应用开发者基础与高级认证题库——中级篇

系列文章目录 HarmonyOS应用开发者基础与高级认证题库——基础篇 HarmonyOS应用开发者基础与高级认证题库——中级篇 文章目录 系列文章目录前言一、判断二、单选三、多选 前言 今天刚换了台果子手机就收到了华子鸿蒙开发认证邀请&#xff08;认证链接&#xff09;&#xff0…...

Python中实现多个列表、字典、元组、集合的连接

目录 目录 前言 一、列表 1、运算符 2、extend&#xff08;&#xff09;方法 3、解包操作 * 二、字典 1、update&#xff08;&#xff09;方法 2、解包操作 ** 三、元组 1、 运算符 2、解包操作 * 四、集合 1、union方法 2、| 运算符 3、解包操作 * 五、不同类…...

1005 继续(3n+1)猜想

描述 卡拉兹(Callatz)猜想已经在1001中给出了描述。在这个题目里&#xff0c;情况稍微有些复杂。 当我们验证卡拉兹猜想的时候&#xff0c;为了避免重复计算&#xff0c;可以记录下递推过程中遇到的每一个数。例如对 n3 进行验证的时候&#xff0c;我们需要计算 3、5、8、4、…...

基于图片、无人机、摄像头拍摄进行智能检测功能

根据要求进行无人机拍摄的视频或图片进行智能识别&#xff0c;开发过程需要事项 1、根据图片案例进行标记&#xff0c;进行模型训练 2、视频模型训练 开发语言为python 根据需求功能进行测试结果如下 根据车辆识别标记进行的测试结果截图 测经过查看视频 8月1日...

Boost开发指南-4.2ignore_unused

ignore_unused 编写代码的过程中有时会出现一些暂时用不到但又必须保留的变量&#xff0c;GCC等编译器会对此发出警告&#xff0c;使用-Wunused可以关闭这些警告消息&#xff0c;不过这也有可能导致潜在的隐患。古老的办法是使用(void)var的形式来“使用”一下变量&#xff0c…...

【Mybatis】XML映射文件

目录 11.3XML映射文件 1.select 2.insert、update、delete 3.Sql 4.parameters(参数) 5.resultMap 6.resultMap 使用示例 (1)在先前创建的数据库stu中创建表student 2&#xff0c;并插入若干条数据&#xff0c;代码如下&#xff1a; (2)创建工程mybatis_ResultMap_demo。 (…...

11.2【MyBatis】主配置文件

目录 11.2【MyBatis】主配置文件 1.properties&#xff08;属性&#xff09; 2.settings(设置) 3.typeAliases(别名) 4.typeHandlers类型处理器 5.objectFactory 对象工厂 6.plugins(插件) 7.environments (配置环境) 8.mappers (映射器) 11.2【MyBatis】主配置文件 MyBatis的 …...

linuxARM裸机学习笔记(2)----汇编LED灯实验

MX6ULL 的 IO IO的复用功能 这里的只使用了低五位&#xff0c;用来配置io口&#xff0c;其中bit0~bit3(MUX_MODE)就是设置 GPIO1_IO00 的复用功能的&#xff0c;GPIO1_IO00 一共可以复用为 9种功能 IO&#xff0c;分别对应 ALT0~ALT8。每种对应了不同的功能 io的属性配置 HY…...

用C语言实现插入排序算法

1.设计思路 用插入排序对长度为n的待排序数组A进行排序的伪代码&#xff08;在代码中&#xff0c;A中元素的数目n用A.length来表示&#xff09;。 伪代码如下&#xff1a; INSERTION-SORT(A) for j2 to A.length:keyA[j] //将A[j]插入已排序序列A[1..j-1]ij-1while i>0…...

2023 电赛E题--可能会出现的问题以及解决方法

2023年电赛E题报告模板&#xff08;K210版&#xff09;--可直接使用 本文链接&#xff1a;2023年电赛E题报告模板&#xff08;K210版&#xff09;--可直接使用_皓悦编程记的博客-CSDN博客 解决激光笔在黑色区域无法识别 本文链接&#xff1a; 2023 电赛 E 题 激光笔识别有误-…...

Demystifying Prompts in Language Models via Perplexity Estimation

Demystifying Prompts in Language Models via Perplexity Estimation 原文链接 Gonen H, Iyer S, Blevins T, et al. Demystifying prompts in language models via perplexity estimation[J]. arXiv preprint arXiv:2212.04037, 2022. 简单来说就是作者通过在不同LLM和不同…...

WEB集群——http、tomcat

1. 简述静态网页和动态网页的区别。 2. 简述 Webl.0 和 Web2.0 的区别。 3. 安装tomcat8&#xff0c;配置服务启动脚本&#xff0c;部署jpress应用。 1. 简述静态网页和动态网页的区别。 1&#xff09;、静态网页 &#xff08;1&#xff09;、什么是静态网页 请求响应信息&…...

Socks5代理:网络安全与爬虫之利器

一、Socks5代理&#xff1a;简介与工作原理 Socks5代理&#xff0c;全称为Socket Secure 5代理&#xff0c;是一种允许用户通过代理服务器进行网络连接的技术。它是Socks协议的最新版本&#xff0c;在网络安全和数据传输方面有着显著的优势。 Socks5代理与其他代理的不同之处在…...

如何兼容低版本浏览器

如何兼容低版本浏览器 分为三个部分来说 HTML 低版本浏览器无法识别新增的HTML5元素&#xff0c;如果要兼容这部分浏览器&#xff0c;需要做以下处理&#xff1a; 对于非可替换元素&#xff0c;比如article、section、header、footer等&#xff0c;这种元素虽然低版本浏览器不识…...

【雕爷学编程】MicroPython动手做(39)——机器视觉之图像基础2

MixPY——让爱(AI)触手可及 MixPY布局 主控芯片&#xff1a;K210&#xff08;64位双核带硬件FPU和卷积加速器的 RISC-V CPU&#xff09; 显示屏&#xff1a;LCD_2.8寸 320*240分辨率&#xff0c;支持电阻触摸 摄像头&#xff1a;OV2640&#xff0c;200W像素 扬声器&#…...

gitlab搭建

回到目录 GitLab 是一个用于仓库管理系统的开源项目&#xff0c;使用 Git 作为代码管理工具&#xff0c;并在此基础上搭建起来的 Web 服务。 Gitlab 是被广泛使用的基于 git 的开源代码管理平台, 基于 Ruby on Rails 构建, 主要针对软件开发过程中产生的代码和文档进行管理,…...

JMeter 的使用

文章目录 1. JMeter下载2. JMeter的使用2.1 JMeter中文设置2.2 JMeter的使用2.2.1 创建线程组2.2.2 HTTP请求2.2.3 监听器 1. JMeter下载 官网地址 https://jmeter.apache.org/download_jmeter.cgi https://dlcdn.apache.org//jmeter/binaries/apache-jmeter-5.6.2.zip 下载解…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架&#xff0c;用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录&#xff0c;以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...