当前位置: 首页 > news >正文

利用OpenCV实现图像拼接

一、介绍

     图像拼接.

二、分步实现

     要实现图像拼接,简单来说有以下几步:

  1. 对每幅图进行特征点提取
  2. 对对特征点进行匹配
  3. 进行图像配准
  4. 把图像拷贝到另一幅图像的特定位置
  5. 对重叠边界进行特殊处理

     PS:需要使用低版本的opencv,否则无法使用特征角点提取算子。

#include "highgui/highgui.hpp"    
#include "opencv2/nonfree/nonfree.hpp"    
#include "opencv2/legacy/legacy.hpp"   
#include <iostream>  using namespace cv;
using namespace std;typedef struct
{Point2f left_top;Point2f left_bottom;Point2f right_top;Point2f right_bottom;
}four_corners_t;four_corners_t corners;void CalcCorners(const Mat& H, const Mat& src)
{// 左上角(0, 0, 1)double v2[3] = { 0, 0, 1 };double v1[3] = { 0 };Mat V2 = Mat(3, 1, CV_64FC1, v2);Mat V1 = Mat(3, 1, CV_64FC1, v1);V1 = H * V2;corners.left_top.x = v1[0] / v1[2];corners.left_top.y = v1[1] / v1[2];// 左下角(0, src.rows, 1)v2[0] = 0;v2[1] = src.rows;v2[2] = 1;V2 = Mat(3, 1, CV_64FC1, v2);V1 = Mat(3, 1, CV_64FC1, v1);V1 = H * V2;corners.left_bottom.x = v1[0] / v1[2];corners.left_bottom.y = v1[1] / v1[2];// 右上角(src.cols, 0, 1)v2[0] = src.cols;v2[1] = 0;v2[2] = 1;V2 = Mat(3, 1, CV_64FC1, v2);V1 = Mat(3, 1, CV_64FC1, v1);V1 = H * V2;corners.right_top.x = v1[0] / v1[2];corners.right_top.y = v1[1] / v1[2];// 右下角(src.cols, src.rows, 1)v2[0] = src.cols;v2[1] = src.rows;v2[2] = 1;V2 = Mat(3, 1, CV_64FC1, v2);V1 = Mat(3, 1, CV_64FC1, v1);V1 = H * V2;corners.right_bottom.x = v1[0] / v1[2];corners.right_bottom.y = v1[1] / v1[2];
}void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst)
{int start = MIN(corners.left_top.x, corners.left_bottom.x);//开始位置,即重叠区域的左边界  double processWidth = img1.cols - start; // 重叠区域的宽度  int rows = dst.rows;int cols = img1.cols; // 注意,是列数*通道数double alpha = 1; // img1中像素的权重  for (int i = 0; i < rows; i++){uchar* p = img1.ptr<uchar>(i);  // 获取第i行的首地址uchar* t = trans.ptr<uchar>(i);uchar* d = dst.ptr<uchar>(i);for (int j = start; j < cols; j++){// 如果遇到图像trans中无像素的黑点,则完全拷贝img1中的数据if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0){alpha = 1;}else{// img1中像素的权重,与当前处理点距重叠区域左边界的距离成正比,实验证明,这种方法确实好  alpha = (processWidth - (j - start)) / processWidth;}d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha);d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha);d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha);}}
}int main(int argc, char* argv[])
{Mat image01 = imread("image2.png", 1); //右图Mat image02 = imread("image1.png", 1); //左图imshow("p2", image01);imshow("p1", image02);// 灰度图转换  Mat image1, image2;cvtColor(image01, image1, CV_RGB2GRAY);cvtColor(image02, image2, CV_RGB2GRAY);// 提取特征点SurfFeatureDetector Detector(2000);vector<KeyPoint> keyPoint1, keyPoint2;Detector.detect(image1, keyPoint1);Detector.detect(image2, keyPoint2);// 特征点描述SurfDescriptorExtractor Descriptor;Mat imageDesc1, imageDesc2;Descriptor.compute(image1, keyPoint1, imageDesc1);Descriptor.compute(image2, keyPoint2, imageDesc2);FlannBasedMatcher matcher;vector<vector<DMatch> > matchePoints;vector<Mat> train_desc(1, imageDesc1);matcher.add(train_desc);matcher.train();matcher.knnMatch(imageDesc2, matchePoints, 2);cout << "total match points: " << matchePoints.size() << endl;// Lowe's algorithm,获取优秀匹配点vector<DMatch> GoodMatchePoints;for (int i = 0; i < matchePoints.size(); i++){if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance){GoodMatchePoints.push_back(matchePoints[i][0]);}}// draw matchMat first_match;drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match);imshow("first_match ", first_match);vector<Point2f> imagePoints1, imagePoints2;for (int i = 0; i < GoodMatchePoints.size(); i++){imagePoints2.push_back(keyPoint2[GoodMatchePoints[i].queryIdx].pt);imagePoints1.push_back(keyPoint1[GoodMatchePoints[i].trainIdx].pt);}// 获取图像1到图像2的投影映射矩阵 尺寸为3*3  Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC);cout << "变换矩阵为:\n" << homo << endl << endl; // 输出映射矩阵      // 计算配准图的四个顶点坐标CalcCorners(homo, image01);cout << "left_top:" << corners.left_top << endl;cout << "left_bottom:" << corners.left_bottom << endl;cout << "right_top:" << corners.right_top << endl;cout << "right_bottom:" << corners.right_bottom << endl;// 图像配准  Mat imageTransform1, imageTransform2;warpPerspective(image01, imageTransform1, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), image02.rows));// warpPerspective(image01, imageTransform2, adjustMat*homo, Size(image02.cols*1.3, image02.rows*1.8));imshow("直接经过透视矩阵变换", imageTransform1);// 创建拼接后的图,需提前计算图的大小int dst_width = imageTransform1.cols;  // 取最右点的长度为拼接图的长度int dst_height = image02.rows;Mat dst(dst_height, dst_width, CV_8UC3);dst.setTo(0);imageTransform1.copyTo(dst(Rect(0, 0, imageTransform1.cols, imageTransform1.rows)));image02.copyTo(dst(Rect(0, 0, image02.cols, image02.rows)));imshow("b_dst", dst);// 优化拼接处OptimizeSeam(image02, imageTransform1, dst);imshow("dst", dst);waitKey();return 0;
}

  

 

三、利用stitch实现

#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/stitching.hpp"
#include <iostream>using namespace std;
using namespace cv;int main(int argc, char* argv[])
{Mat img1 = imread("image1.png", cv::IMREAD_COLOR);Mat img2 = imread("image2.png", cv::IMREAD_COLOR);vector<Mat> imgs;imgs.push_back(img1);imgs.push_back(img2);Mat pano;Ptr<Stitcher> stitcher = Stitcher::create(Stitcher::PANORAMA);Stitcher::Status status = stitcher->stitch(imgs, pano);if (status != Stitcher::OK){cout << "Can't stitch images, error code = " << int(status) << endl;return EXIT_FAILURE;}string result_name = "result1.jpg";imwrite(result_name, pano);cout << "stitching completed successfully\n" << result_name << " saved!";return EXIT_SUCCESS;
}

相关文章:

利用OpenCV实现图像拼接

一、介绍 图像拼接. 二、分步实现 要实现图像拼接&#xff0c;简单来说有以下几步&#xff1a; 对每幅图进行特征点提取对对特征点进行匹配进行图像配准把图像拷贝到另一幅图像的特定位置对重叠边界进行特殊处理 PS&#xff1a;需要使用低版本的opencv&#xff0c;否则无法使…...

【java安全】无Commons-Collections的Shiro550反序列化利用

文章目录 【java安全】无Commons-Collections的Shiro550反序列化利用Shiro550利用的难点CommonsBeanutils1是否可以Shiro中&#xff1f;什么是serialVersionUID&#xff1f;W 无依赖的Shiro反序列化利用链POC 【java安全】无Commons-Collections的Shiro550反序列化利用 Shiro5…...

CSS 滚动条

一、滚动条样式属性 ::-webkit-scrollbar {width: 6px; /* 竖向滚动条宽度 */height: 6px; /* 横向滚动条高度 */ }::-webkit-scrollbar-thumb {border-radius: 10px; /* 滚动条样式 */-webkit-box-shadow: inset 0 0 3px red; /* 内阴影 */background-color: blue; /* 滚动条…...

Linux: security: openssh: sshd 出现defunct的一种情况

最近遇到了一个问题,就出现了一对遗留进程对,类似于下面这两个 root 77399 19100 77399 0 1 01:46 ? 00:00:00 sshd: \mzhan017 [priv] sshd 77400 77399 77400 0 1 01:46 ? 00:00:00 sshd: [defunct] 人生中的第一次遇到这种情况。一定要记录一下! 关于[priv]这个解释,…...

Self-regulating Prompts: Foundational Model Adaptation without Forgetting

本文也是大模型系列的文章&#xff0c;主要是与Prompt Learning有关。针对《Self-regulating Prompts: Foundational Model Adaptation without Forgetting》的翻译。 自我调节的提示&#xff1a;不遗忘的基础模型适应 摘要1 引言2 相关工作3 提出的方法3.1 前言3.2 提示学习的…...

平时工资不够用?推荐4种适合工作之余做的兼职副业!

你是否也曾经在为每个月的工资发愁&#xff1f;你是否想过做点副业来增加收入&#xff1f;现在很多上班族的工资&#xff0c;已经难以满足他们的生活需求了&#xff0c;很多人开始尝试通过副业来增加收入。那么上班族要如何寻找适合自己的副业呢&#xff1f;下面就给大家分享几…...

21.Netty源码之编码器

highlight: arduino-light Netty如何实现自定义通信协议 在学习完如何设计协议之后&#xff0c;我们又该如何在 Netty 中实现自定义的通信协议呢&#xff1f;其实 Netty 作为一个非常优秀的网络通信框架&#xff0c;已经为我们提供了非常丰富的编解码抽象基类&#xff0c;帮助我…...

Linux 快速创建桌面图标

在安装 tar.gz 这类型压缩文件时&#xff0c;通常启动文件是.sh文件。文章主要记录快速添加到桌面图标。 1、解压 tar -zxvf XXX.tar.gz 2、创建桌面图标文件 touch XXX.desktop 3、文件中配置 [Desktop Entry] NameXXX CommentZZZ Exec/软件可执行文件所在目录/可执行文…...

数据结构—哈夫曼树及其应用

5.6哈夫曼树及其应用 5.6.1哈夫曼树的基本概念 路径&#xff1a;从树中一个结点到另一个结点之间的分支构成这两个结点间的路径。 结点的路径长度&#xff1a;两结点间路径上的分支数。 树的路径长度&#xff1a;从树根到每一个结点的路径长度之和。记作 TL 结点数目相同的…...

NeRF-SLAM: Real-Time Dense Monocular SLAM with Neural Radiance Fields 论文阅读

论文信息 题目&#xff1a;NeRF-SLAM: Real-Time Dense Monocular SLAM with Neural Radiance Fields 作者&#xff1a;Antoni Rosinol, John J. Leonard&#xff0c; Luca Carlone 代码&#xff1a;https://github.com/ToniRV/NeRF-SLAM 来源&#xff1a;arxiv 时间&#xff…...

机器学习之弹性网络(Elastic Net)

弹性网络 代码原文 下面代码参考scikit-learn中文社区&#xff0c;链接在上面。 但是由于scikit-learn中文社区上的代码有些地方跑不通&#xff0c;故对此代码做了修改&#xff0c;输出结果与社区中显示的结果相同。 对弹性网络进行简单的介绍&#xff1a; ElasticNet是一个训…...

嵌入式入门教学——C51

一、前期准备 1、硬件设备 2、软件设备 二、预备知识 1、什么是单片机&#xff1f; 在一片集成电路芯片上集成微处理器、存储器、IO接口电路&#xff0c;从而构成了单芯片微型计算机&#xff0c;及单片机。STC89C52单片机&#xff1a; STC&#xff1a;公司89&#xff1a;所属…...

2023-08-03力扣每日一题

链接&#xff1a; 722. 删除注释 题意&#xff1a; 如题&#xff0c;特殊规则见链接 解&#xff1a; 字符串处理&#xff0c;嗯写就完事了,主要是判断指针位置和特殊规则 实际代码&#xff1a; #include<bits/stdc.h> using namespace std; vector<string> …...

【蓝桥杯备考资料】如何进入国赛?

目录 写在前面注意事项数组、字符串处理BigInteger日期问题DFS 2013年真题Java B组世纪末的星期马虎的算式振兴中华黄金连分数有理数类&#xff08;填空题&#xff09;三部排序&#xff08;填空题&#xff09;错误票据幸运数字带分数连号区间数 2014年真题蓝桥杯Java B组03猜字…...

QtWebApp开发https服务器,完成客户端与服务器基于ssl的双向认证

引言&#xff1a;所谓http协议&#xff0c;本质上也是基于TCP/IP上服务器与客户端请求和应答的标准&#xff0c;web开发中常用的http server有apache和nginx。Qt程序作为http client可以使用QNetworkAccessManager很方便的进行http相关的操作。Qt本身并没有http server相关的库…...

动态IP代理的优势展现与应用场景

在当今数字化时代&#xff0c;网络安全和隐私保护变得愈发重要。作为一家动态IP代理产品供应商&#xff0c;我们深知在保护个人隐私和提高网络安全性方面的重要性。本文将会分享动态IP代理的优势及其在不同应用场景下的实际应用案例&#xff0c;帮助更好地了解和应用动态IP代理…...

ad+硬件每日学习十个知识点(22)23.8.2(LDO datasheet手册解读)

文章目录 1.LDO的概述、features2.LDO的绝对参数&#xff08;功率升温和结温&#xff09;3.LDO的引脚功能4.LDO的电气特性5.LDO的典型电路&#xff08;电容不能真用1uF&#xff0c;虽然按比例取输出值&#xff0c;但是R2的取值要考虑释放电流&#xff09;6.LDO的开关速度和线性…...

这可是全网最全的网络工程师零基础实战视频整理,最新版分享

互联网中每一项傍身的技能都是需要从如何入门开始的&#xff0c;网络技术也是如此&#xff01; 网络技术区别其他互联网技能的一点是学习需要从设备开始&#xff0c;只有认识了解了路由器、交换机、防火墙这些网络设备&#xff0c;才开始从网络通信原理开始&#xff0c;这使得网…...

笔记本WIFI连接无网络【实测有效解决方案,不用重启电脑】

笔记本Wifi连接无网络实测有效解决方案 问题描述&#xff1a; 笔记本买来一段时间后&#xff0c;WIFI网络连接开机一段时间还正常连接&#xff0c;但是过一段时间显示网络连接不上解决方案&#xff1a; 1.编写网络重启bat脚本&#xff0c;将以下内容写到文本文件&#xff0c;把…...

js 正则表达式配合replace进行过滤html字符串遇到的性能问题

问题场景复现&#xff1a; 博主要实现一个邮箱列表&#xff0c;其中列表中的每一封邮件都有一个摘要&#xff0c;但是摘要是要自己从后端提供的content内容区自己过滤掉所有&#xff0c;只留下纯文本内容的前面几行作为摘要。 性能问题 当我测试到一个邮箱&#xff0c;其中的…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中&#xff0c;接口是一种抽象类型&#xff0c;它定义了一组方法的集合&#xff1a; // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的&#xff1a; // 矩形结构体…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案

JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停​​ 1. ​​安全点(Safepoint)阻塞​​ ​​现象​​:JVM暂停但无GC日志,日志显示No GCs detected。​​原因​​:JVM等待所有线程进入安全点(如…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树&#xff1f; 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持&#xff1a; 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...

PHP 8.5 即将发布:管道操作符、强力调试

前不久&#xff0c;PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5&#xff01;作为 PHP 语言的又一次重要迭代&#xff0c;PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是&#xff0c;借助强大的本地开发环境 ServBay&am…...

「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案

在移动互联网营销竞争白热化的当下&#xff0c;推客小程序系统凭借其裂变传播、精准营销等特性&#xff0c;成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径&#xff0c;助力开发者打造具有市场竞争力的营销工具。​ 一、系统核心功能架构&…...