当前位置: 首页 > news >正文

Sklearn-使用SVC对iris数据集进行分类

Sklearn-使用SVC对iris数据集进行分类

  • iris数据集的加载
  • 训练svc模型
  • 输出混淆矩阵和分类报告
  • 使用Pipeline管道完成固定操作
    • 不使用Pipeline
    • 使用Pipeline

使用SVC对iris数据集进行分类预测
涉及内容包含:

  • 数据集的加载,训练集和测试集的划分
  • 训练svc模型,对测试集的预测
  • 输出混淆矩阵和分类报告
  • 使用Pipeline执行操作

iris数据集的加载

加载数据集
用DataFrame展示数据
划分训练集和测试集合

from sklearn.datasets import load_iris
iris = load_iris()
iris.keys()
dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename'])
data = iris['data']
target = iris['target']# 以DataFrame显示所有的数据
import pandas as pd
df = pd.DataFrame(data,columns=iris['feature_names']) 
df['target'] = target # 添加target列
sepal length (cm)sepal width (cm)petal length (cm)petal width (cm)target
05.13.51.40.20
14.93.01.40.20
24.73.21.30.20
34.63.11.50.20
45.03.61.40.20
..................
1456.73.05.22.32
1466.32.55.01.92
1476.53.05.22.02
1486.23.45.42.32
1495.93.05.11.82

150 rows × 5 columns

# 划分数据集:训练集和测试集
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(data,target,test_size=0.3) # 测试集占30%。训练集70%

训练svc模型

  • 导入库文件
  • 初始化svc
  • 训练svc
from sklearn.svm import SVC
# 初始化SVC
svc = SVC()
# 训练
svc.fit(x_train,y_train)
# 查看训练效果
print("训练集的精度",svc.score(x_train,y_train))
# 对测试集预测的精度
print("对测试集的预测效果:",svc.score(x_test,y_test))# 对测试集进行预测
y_pre = svc.predict(x_test)
# 表格对比预测与实际结果
df2 = pd.DataFrame(data = {'predict':y_pre,'true':y_test
})
训练集的精度 0.9714285714285714
对测试集的预测效果: 0.9555555555555556

输出混淆矩阵和分类报告

  • 输出混淆矩阵:查看每个类预测的成功与失败的情况
  • 输出分类报告:查看分类的性能
from sklearn.metrics import confusion_matrix# 输出混淆矩阵
con_matrix = confusion_matrix(y_test,y_pre)
print(con_matrix)
[[12  0  0][ 0 15  1][ 0  1 16]]
from sklearn.metrics import classification_report
# 输出分类报告
report = classification_report(y_test,y_pre,target_names=iris['target_names'])
print(report)
              precision    recall  f1-score   supportsetosa       1.00      1.00      1.00        12versicolor       0.94      0.94      0.94        16virginica       0.94      0.94      0.94        17accuracy                           0.96        45macro avg       0.96      0.96      0.96        45
weighted avg       0.96      0.96      0.96        45

使用Pipeline管道完成固定操作

  • 增加对数据的归一化处理
  • 将对数据的归一化处理和训练处理放在pipeline中完成

不使用Pipeline

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler iris = load_iris()
data = iris['data']
target = iris['target']# 划分数据集:训练集和测试集
x_train,x_test,y_train,y_test = train_test_split(data,target,test_size=0.3,random_state=42,stratify=target) # 测试集占30%。训练集70%# 特征变量标准化
# 由于支持向量机可能受特征变量取值范围影响,训练集与测试集的特征变量标准化
scaler = StandardScaler().fit(x_train)
x_train_s = scaler.transform(x_train)
x_test_s = scaler.transform(x_test)# 训练模型
svm = SVC()
svm.fit(x_train_s, y_train)
print("精确度:",svm.score(x_test_s, y_test))
精确度: 0.9333333333333333

使用Pipeline

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.svm import SVCfrom sklearn.preprocessing import StandardScaler 
from sklearn.pipeline import Pipeline
# from sklearn.pipeline import make_pipelineiris = load_iris()
data = iris['data']
target = iris['target']# 划分数据集:训练集和测试集
x_train,x_test,y_train,y_test = train_test_split(data,target,test_size=0.3,random_state=42,stratify=target) # 测试集占30%。训练集70%# 构造管道
pipe = Pipeline([('std_scaler',StandardScaler()),('svc',SVC())]
)
# 使用管道
pipe.fit(x_train,y_train)
# 预测
print("精度为:",pipe.score(x_test,y_test))
精度为: 0.9333333333333333

相关文章:

Sklearn-使用SVC对iris数据集进行分类

Sklearn-使用SVC对iris数据集进行分类 iris数据集的加载训练svc模型输出混淆矩阵和分类报告使用Pipeline管道完成固定操作不使用Pipeline使用Pipeline 使用SVC对iris数据集进行分类预测 涉及内容包含: 数据集的加载,训练集和测试集的划分训练svc模型,对测试集的预测…...

项目经理必读:领导风格对项目成功的关键影响

引言 项目经理作为一个领导者的角色,他们需要协调各方资源,管理团队,推动项目的进行。为了完成这些任务,项目经理必须具备各种领导风格的灵活性,以应对项目中的各种变数和挑战。在这篇文章中,我们将讨论领…...

行业追踪,2023-08-04

自动复盘 2023-08-04 凡所有相,皆是虚妄。若见诸相非相,即见如来。 k 线图是最好的老师,每天持续发布板块的rps排名,追踪板块,板块来开仓,板块去清仓,丢弃自以为是的想法,板块去留让…...

双链表(带哨兵位头节点)

目录 ​编辑 双链表的初始化: 双链表的打印: 双链表的尾插: 双链表的头插: 双链表的尾删: 双链表的头删: 双链表pos位置之前的插入: 双链表pos位置的删除: 关于顺序表和链表…...

MySQL - LOAD DATA LOCAL INFILE将数据导入表中和 INTO OUTFILE (速度快)

文章目录 一、语法介绍二、数据分隔符介绍 :换行符说明: 三、示例LOAD DATA LOCAL INFILEINTO OUTFILE 总结 一、语法介绍 LOAD DATA[LOW_PRIORITY | CONCURRENT] [LOCAL]INFILE file_name[REPLACE | IGNORE]INTO TABLE tbl_name[PARTITION (partition_name [, par…...

String ,StringBulider ,StringBuffer

面试指北149 知乎 StringBuffer和StringBuilder区别详解(Java面试)_stringbuffer和stringbuilder的区别_辰兮要努力的博客-CSDN博客...

阶段总结(linux基础)

目录 一、初始linux系统 二、基本操作命令 三、目录结构 四、文件及目录管理命令 查看文件内容 创建文件 五、用户与组管理 六、文件权限与压缩管理 七、磁盘管理 八、系统程序与进程管理 管理机制 文件系统损坏 grub引导故障 磁盘资源耗尽 程序与进程的区别 查…...

HTTP(超文本传输协议)学习

关于HTTP补学 一、HTTP能干什么 通过下图能够直观的看出:“交换数据 ” 二、HTTP请求例子 一个 HTTP 方法,通常是由一个动词,像 GET、POST 等,或者一个名词,像 OPTIONS、HEAD 等,来定义客户端执行的动作。…...

23年7月工作笔记整理(前端)

目录 一、js相关二、业务场景学习 一、js相关 1.js中Number类型的最大值常量:Number.MAX_VALUE,最小值常量:Number.MIN_VALUE 2.巩固一下reduce语法:reduce(function(初始值或方法的返回值,当前值,当前值的索引,要累加的初始值))…...

pytorch学习——正则化技术——权重衰减

一、概念介绍 权重衰减(Weight Decay)是一种常用的正则化技术,它通过在损失函数中添加一个惩罚项来限制模型的复杂度,从而防止过拟合。 在训练参数化机器学习模型时, 权重衰减(weight decay)是…...

iTOP-RK3588开发板Ubuntu 系统交叉编译 Qt 工程-命令行交叉编译

使用源码 rk3588_linux/buildroot/output/rockchip_rk3588/host/bin/qmake 交叉编译 QT 工程。 最后烧写编译好的 buildroot 镜像,将编译好的 QT 工程可执行程序在 buildroot 系统上运行。 交叉编译 QT 工程如下所示,首先进入 QLed 的工程目录下。 然后…...

Java进阶——数据结构与算法之哈希表与树的入门小结(四)

文章大纲 引言一、哈希表1、哈希表概述2、哈希表的基本设计思想3、JDK中的哈希表的设计思想概述 二、树1、树的概述2、树的特点3、树的相关术语4、树的存储结构4.1、双亲表示法4.2、孩子兄弟表示法:4.3、孩子表示法:4.4、双亲孩子表示法 三、二叉树1、二…...

DataFrame中按某字段分类并且取该分类随机数量的数据

最近有个需求,把某个df中的数据,按照特定字段分类,并且每个分类只取随机数量数据,这个随机数量需要有范围限制。写出来记录下。 def randomCutData(self, df, startNum):grouped df.groupby(classify_label)df_sampled pd.Data…...

【c++】rand()随机函数的应用(一)——rand()函数详解和实例

c语言中可以用rand()函数生成随机数,今天来探讨一下rand()函数的基本用法和实际应用。 本系列文章共分两讲,今天主要介绍一下伪随机数生成的原理,以及在伪随机数生成的基础上,生成随机数的技巧,下一讲主要介绍无重复随…...

iOS——Block回调

先跟着我实现最简单的 Block 回调传参的使用,如果你能举一反三,基本上可以满足了 OC 中的开发需求。已经实现的同学可以跳到下一节。 首先解释一下我们例子要实现什么功能(其实是烂大街又最形象的例子): 有两个视图控…...

html学习6(xhtml)

1、xhtml是以xml格式编写的html。 2、xhtml与html的文档结构区别&#xff1a; DOCTYPE是强制性的<html>、<head>、<title>、<body>也是强制性的<html>中xmlns属性是强制性的 3、 元素语法区别&#xff1a; xhtml元素必须正确嵌套xhtml元素必…...

UML-活动图

目录 一.活动图概述: 1.活动图的作用&#xff1a; 2.以下场合不使用活动图&#xff1a; 3.活动图的基本要素&#xff1a; 4.活动图的图符 4.1起始状态 4.2终止状态 4.3状态迁移 4.4决策点 4.5同步条:表示活动之间的不同 5.活动图: 二.泳道&#xff1a; 1.泳道图&a…...

跨境电商怎么做?Live Market教你创业及做大生意

随着全球化的不断深入和互联网技术的迅猛发展&#xff0c;跨境电商成为了一个蓬勃发展的行业。根据eMarketer的数据&#xff0c;2021年全球跨境电商销售额将达到4.5万亿美元&#xff0c;预计到2025年将增长至6.3万亿美元。这表明&#xff0c;跨境电商行业将继续保持强劲增长的趋…...

Linux 4.19 和Linux 5.10 的区别

Linux 4.19和Linux 5.10是Linux内核的两个不同版本。它们之间有一些重要的区别&#xff0c;包括功能、性能和支持方面的改进。以下是一些常见的区别&#xff1a; 功能增强&#xff1a;Linux 5.10相对于4.19引入了许多新功能和增强。例如&#xff0c;Linux 5.10引入了BPF&#x…...

学习单片机的秘诀:实践与坚持

在学习单片机时&#xff0c;将实践与学习结合起来是一个很好的方法。不要一上来就死磕指令和名词&#xff0c;而是边学边做实验&#xff0c;循序渐进地理解和应用指令。通过实验&#xff0c;你能亲身感受到指令的控制效果&#xff0c;增强对单片机的理解和兴趣。 学习单片机不…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置&#xff0c;使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么&#xff1f; WebAssembly&#xff08;WASM&#xff09; 是一种能在现代浏览器中高效运行的二进制指令格式&#xff0c;它不是传统的编程语言&#xff0c;而是一种 低级字节码格式&#xff0c;可由高级语言&#xff08;如 C、C、Rust&am…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

并发编程 - go版

1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程&#xff0c;系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...

怎么让Comfyui导出的图像不包含工作流信息,

为了数据安全&#xff0c;让Comfyui导出的图像不包含工作流信息&#xff0c;导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo&#xff08;推荐&#xff09;​​ 在 save_images 方法中&#xff0c;​​删除或注释掉所有与 metadata …...

Python实现简单音频数据压缩与解压算法

Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中&#xff0c;压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言&#xff0c;提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...

用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法

用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法 大家好,我是Echo_Wish。最近刷短视频、看直播,有没有发现,越来越多的应用都开始“懂你”了——它们能感知你的情绪,推荐更合适的内容,甚至帮客服识别用户情绪,提升服务体验。这背后,神经网络在悄悄发力,撑起…...

高效的后台管理系统——可进行二次开发

随着互联网技术的迅猛发展&#xff0c;企业的数字化管理变得愈加重要。后台管理系统作为数据存储与业务管理的核心&#xff0c;成为了现代企业不可或缺的一部分。今天我们要介绍的是一款名为 若依后台管理框架 的系统&#xff0c;它不仅支持跨平台应用&#xff0c;还能提供丰富…...