对于现有的分布式id发号器的思考 id生成器 雪花算法 uuid
在工作过程中接触了很多id生成策略,但是有一些问题
雪花id
强依赖时钟,对于时钟回拨无法很好解决
tinyid
滴滴开源,依赖mysql数据库,自增,无业务属性
uuid
生成是一个字符串没有顺序,数据库索引组织数据是按顺序处理,如果用于主键存储,对于数据库来说会造成频繁的索引页合并,增加数据库的负担,不建议。
还有其他的id生成策略,对于一些简单的应用可以
分布式id特点
个人考虑,分布式id需要具有的特点如下
业务编号
通过此信息可以确定此编号是用于干什么的
数据中心编号
对于大型的互联网项目,会有分区域部署的情况,分流、负载均衡
当前时间
当前时间精确到秒
ip地址
对于集群使用,用于记录当前请求服务节点的ip,好知道是哪个节点发起的请求,需要将Ip转int进行处理
当前序号
从1开始,可以做成自增
拿经常使用的myql来说,索引中数据排序是按照主键来的,所以全部用数字来表示,考虑到上面的特点排序以及长度如下
业务标识(7位)+当前时间(年月日时分秒,yyyyMMddHHmmss,14位)+数据中心编号(5位)+ip地址(10位)+序号(19位)
当前id为55位,这样的id可读性强,看到这个id就知道哪个业务什么时候的数据,长度需要实际情况进行调整
业务标识,7位,最多代表9999999种业务,对于互联网公司一般来说足够了
当前时间,14位,精确到秒
数据中心,5位,一般足够
ip地址,对于地址进行int转换,10位
序号,19位,对应long类型的有符号最大值,与当前时间进行组合,一秒内生成19位id足够了
对于分页查询来讲,查询的时候需要确保此id属于哪个业务,先按条件进行匹配最大的数据id,然后根据此id进行范围匹配,这样可以最大限度使用索引,防止过多数据加载到内存中通过偏移量只选其中一部分数据。
对于时钟回拨问题
当前时间和序号使用redis进行分别存储,对于redis做sentinel三节点高可用
发号器机器当期时间<redis的时间
即redis时间在后,发号器时间在前,发号器当前时间滞后,如下
发号器当前时间
20230727121211
redis当前存储时间
20230727121212
这种情况有可能是时钟回拨。
为了不影响现有的数据,造成id重复导入插入数据库异常的情况,在现有的序号基础上进行自增。
发号器机器当期时间>=redis时间或者当前机器时间发生变化
如下
发号器当前时间
20230727121212
redis当前存储时间
20230727121211
按照发号器的时间处理,序号重置从0开始自增,需要事务锁定当前时间和序号,防止后面的请求造成争用。
对于redis的特性,单线程多个请求过来需要入队列、高并发、lua脚本操作的原子性,可以考虑每次请求调用lua脚本进行序号自增或者当前时间修改。
从redis 6 开始支持多线程,对于redis并发特性,做了一下测试
redis 5 单线程
redis-benchmark -t set,get -n 100000 -r 100000 -d 512 -c 500 -q
SET: 83472.46 requests per second
GET: 80971.66 requests per second
redis 6 两个线程
redis-benchmark -t set,get -n 100000 -r 100000 --threads 2 -d 512 -c 500 -q
SET: 107642.62 requests per second
GET: 110253.59 requests per second
可知,在多线程下多了不到一倍吞吐。
上面这些可以做成一个web服务,在 k8s 中做成一个负载均衡服务,请求时传入当前节点所在的数据中心id。
相关文章:
对于现有的分布式id发号器的思考 id生成器 雪花算法 uuid
在工作过程中接触了很多id生成策略,但是有一些问题 雪花id 强依赖时钟,对于时钟回拨无法很好解决 tinyid 滴滴开源,依赖mysql数据库,自增,无业务属性 uuid 生成是一个字符串没有顺序,数据库索引组织数据…...
jmeter中json提取器,获取多个值,并通过beanshell组成数组
jmeter中json提取器介绍 特别说明:**Compute concatenation var(suffix_ALL)😗*如果找到许多结果,则插件将使用’ , 分隔符将它们连接起来,并将其存储在名为 _ALL的var中 json提取器调试 在查看结果树中选择JSON Pat…...
通过nvm工具快捷切换node.js版本、以及nvm的安装
使用nvm可以实现多个Node.js版本之间切换 步骤目录: 先卸载掉本系统中原有的node版本 去github上下载nvm安装包 安装node 常用的一些nvm命令 1、先卸载掉本系统中原有的node版本 2、去github上下载nvm安装包 https://github.com/coreybutler/nvm-windows/re…...
企业如何搭建矩阵内容,才能真正实现目的?
当下,新媒体矩阵营销已成为众多企业的营销选择之一,各企业可以通过新媒体矩阵实现扩大品牌声量、维持用户关系、提高销售业绩等不同的目的。 而不同目的的矩阵,它的内容运营模式会稍有差别,评价体系也会大不相同。 企业在运营某类…...
Arduino驱动MQ5模拟煤气气体传感器(气体传感器篇)
目录 1、传感器特性 2、硬件原理图 3、驱动程序 MQ5气体传感器,可以很灵敏的检测到空气中的液化气、天然气、煤气等气体,与Arduino结合使用,可以制作火灾液化气、天然气、煤气泄露报警等相关的作品。 1、传感器特性 MQ5用于消费和工业行业中气体泄漏检测设备,该传感器适…...
Mongodb安装(Centos7)
1. 下载 MongoDB: The Developer Data Platform | MongoDB 2. 安装 上传至服务器 解压 tar -zxvf mongodb-linux-x86_64-rhel70-5.0.19.tgz 移动 mv mongodb-linux-x86_64-rhel70-5.0.19 /usr/local/mongodb 3. 配置 vim /etc/profile # set mongodb configuration expor…...
Python 批量处理JSON文件,替换某个值
Python 批量处理JSON文件,替换某个值 直接上代码,替换key TranCode的值 New 为 Update。输出 cancel忽略 import json import os import iopath D:\\Asics\\850\\202307 # old path2 D:\\test2 # new dirs os.listdir(path) num_flag 0 for file…...
凯迪正大—SF6泄漏报警装置的主要特点
SF6泄漏报警系统主要特点 ① 系统采用声速原理,可定量、实时在线测量SF6泄漏气体含量,克服了传统测量方法如负电晕放电法和卤素传感器法只能定性判别是否越限的缺陷,能够准确得到气体中SF6含量。 ② 系统采用双差分处理方法,有效…...
适配器模式与装饰器模式对比分析:优雅解决软件设计中的复杂性
适配器模式与装饰器模式对比分析:优雅解决软件设计中的复杂性 在软件设计中,我们常常面临着需要将不同接口或类协调工作的情况,同时还要满足灵活性和可扩展性的需求。为了应对这些挑战,适配器模式和装饰器模式应运而生,…...
idea使用protobuf
本文参考:https://blog.csdn.net/m0_37695902/article/details/129438549 再次感谢分享 什么是 protobuf ? Protocal Buffers(简称protobuf)是谷歌的一项技术,用于结构化的数据序列化、反序列化。 由于protobuf是跨语言的,所以用…...
【深度学习_TensorFlow】误差函数
写在前面 搭建完网络层后,在每层网络中都要进行前向计算,下一步就是选择合适的误差函数来计算误差。其中均方差函数和交叉熵函数在深度学习中比较常见,均方差函数主要用于回归问题,交叉熵函数主要用于分类问题。 写在中间 均方差…...
mysql按照日期分组统计数据
目录 前言按天统计按周统计按月统计按年统计date_format参数 前言 mysql的date_format函数想必大家都使用过吧,一般用于日期时间转化 # 例如 select DATE_FORMAT(2023-01-01 08:30:50,%Y-%m-%d %H:%i:%s) # 可以得出 2023-01-01 08:30:50# 或者是 select DATE_FOR…...
19 | 分类模型评估指标
文章目录 Python分类模型评估指标准确率(Accuracy)精确率(Precision)召回率(Recall)F1值(F1 Score)混淆矩阵(Confusion Matrix)ROC曲线和AUC值1. 准备数据集2. 初始化并训练逻辑回归模型3. 获取预测概率并计算ROC曲线和AUC值4. 绘制ROC曲线5. 整合代码结论Python分类…...
【Pycharm2022.2.1】python编辑器最新版安装教程(包含2017-2022的所有版本win/mac/linux)
前言 嗨喽~大家好呀,这里是魔王呐 ❤ ~! 永久安装 Pycharm(2017-2022的win/mac/linux所有版本)/ IntelliJ IDEA也可以, 按照本文教程所写的,具体步骤跟着下面的图文教程一步一步来就行,一分钟即可搞定,过…...
深度学习-相关概念
Adam优化器 Adam,Adaptive Moment Estimation,自适应矩估计。是2014年提出的一种万金油式的优化器,使用起来非常方便,梯度下降速度快,但是容易在最优值附近震荡。竞赛中性能会略逊于SGD,毕竟最简单的才是最…...
眼科医生推荐的台灯 护眼台灯买什么好?
我家孩子需要一个护眼灯,就请教了我的一个医生朋友。大家都知道医生白天对着电脑长时间的工作,晚上还要看书,查文献,写论文,选一个对眼睛友好的高质量护眼台灯对他们是刚需,同时又是医生,所以他…...
如何使用 ChatGPT 为 Midjourney 或 DALL-E 等 AI 图片生成提示词
人工智能为创意产业开辟了一个充满可能性的全新世界。人工智能最令人兴奋的应用之一是生成独特且原创的艺术品。Midjourney 和 DALL-E 是人工智能生成艺术的两个突出例子,吸引了艺术家和艺术爱好者的注意。在本文中,我们将探索如何使用 ChatGPT 生成 AI …...
【Linux后端服务器开发】Reactor模式实现网络计算器
目录 一、Reactor模式概述 二、日志模块:Log.hpp 三、TCP连接模块:Sock.hpp 四、非阻塞通信模块:Util.hpp 五、多路复用I/O模块:Epoller.hpp 六、协议定制模块:Protocol.hpp 七、服务器模块:Server.…...
【WebRTC---源码篇】(二:一)PeerConnection详解
Track的添加 上图是整体流程图 RTCErrorOr<rtc::scoped_refptr<RtpSenderInterface>> PeerConnection::AddTrack(rtc::scoped_refptr<MediaStreamTrackInterface> track,const std::vector<std::string>& stream_ids) {RTC_DCHECK_RUN_ON(signal…...
使用tinyxml解析和修改XML文件
首先要清楚XML文件包含哪些元素: 他是由元素、文本或者两者混合物组成。元素可以拥有属性,元素是指从开始标签到结束标签的部分。 <?xml version"1.0" encoding"UTF-8" ?> <books><book id"1001">&…...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
ios苹果系统,js 滑动屏幕、锚定无效
现象:window.addEventListener监听touch无效,划不动屏幕,但是代码逻辑都有执行到。 scrollIntoView也无效。 原因:这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作,从而会影响…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
