Spark 3.1.1 遇到的 from_json regexp_replace组合表达式慢问题的解决
背景
目前公司在从spark 2.4.x升级到3.1.1的时候,遇到了一类SQL极慢的情况,该SQL的如下(只列举了关键的):
select device_personas.* from(selectdevice_id, ads_id, from_json(regexp_replace(device_personas, '(?<=(\\{|,))"device_', '"user_device_'), ${device_schema}) as device_personasfrom input )其${device_schema} 有几百个字段
在没有调优之前 在360core 720GB内存的情况下,需要运行43分钟:
调优之后,资源不变的情况下,只需要运行6分钟:
结论
先说结论:
主要的原因是 Spark 3.1.x 引入的 org.apache.spark.sql.catalyst.optimizer.OptimizeJsonExprs
新规则,该规则对于该SQL作用是裁剪了不必要的列:
导致 regexp_replace
会被调用很多次,具体的原因如该规则的解释:
if JsonToStructs(json) is shared among all fields of CreateNamedStruct. prunedSchema contains all accessed fields in original CreateNamedStruct.
所以设置 spark.sql.optimizer.enableJsonExpressionOptimization 为 false
,或者设置
spark.sql.adaptive.optimizer.excludedRules org.apache.spark.sql.catalyst.optimizer.OptimizeJsonExprs
spark.sql.optimizer.excludedRules org.apache.spark.sql.catalyst.optimizer.OptimizeJsonExprs
跳过该规则。
分析
该SQL的物理计划如下:
没有跳过该规则的情况下:
该主要的物理计划为:
(6) Project
Output [10]: [device_id#62, ads_id#63, from_json(StructField(user_device_adv_age_year,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_adv_age_year AS user_device_adv_age_year#292, from_json(StructField(user_device_child_age,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_child_age AS user_device_child_age#293, from_json(StructField(ads_material_text_tag,StringType,true), ads_personas#70, Some(Asia/Shanghai)).ads_material_text_tag AS ads_material_text_tag#294, from_json(StructField(ads_ad_pic_resolution,StringType,true), ads_personas#70, Some(Asia/Shanghai)).ads_ad_pic_resolution AS ads_ad_pic_resolution#295, from_json(StructField(ctx_sound_patch_scene,StringType,true), ctx_personas#73, Some(Asia/Shanghai)).ctx_sound_patch_scene AS ctx_sound_patch_scene#296, from_json(StructField(ctx_position,StringType,true), ctx_personas#73, Some(Asia/Shanghai)).ctx_position AS ctx_position#297, from_json(StructField(album_category_id,StringType,true), album_personas#72, Some(Asia/Shanghai)).album_category_id AS album_category_id#298, from_json(StructField(album_nlp_labels_app,StringType,true), album_personas#72, Some(Asia/Shanghai)).album_nlp_labels_app AS album_nlp_labels_app#299]
Input [6]: [device_id#62, ads_id#63, device_personas#69, ads_personas#70, album_personas#72, ctx_personas#73]
经过该规则的处理计划转换如下(以两个字段为例):
=== Applying Rule org.apache.spark.sql.catalyst.optimizer.OptimizeJsonExprs ===InsertIntoHadoopFsRelationCommand oss://xima-bd-data3.cn-shanghai.oss-dls.aliyuncs.com/reslib/droplet/generate/data/ai-ad/102041271/1723411818435/xqldata/.staging_1691066243227, false, Parquet, Map(coalesceNum -> 500, path -> oss://xima-bd-data3.cn-shanghai.oss-dls.aliyuncs.com/reslib/droplet/generate/data/ai-ad/102041271/1723411818435/xqldata/.staging_1691066243227), Overwrite, [device_id, ads_id, user_device_adv_age_year, user_device_child_age, ads_material_text_tag, ads_ad_pic_resolution, ctx_sound_patch_scene, ctx_position, album_category_id, album_nlp_labels_app] InsertIntoHadoopFsRelationCommand oss://xima-bd-data3.cn-shanghai.oss-dls.aliyuncs.com/reslib/droplet/generate/data/ai-ad/102041271/1723411818435/xqldata/.staging_1691066243227, false, Parquet, Map(coalesceNum -> 500, path -> oss://xima-bd-data3.cn-shanghai.oss-dls.aliyuncs.com/reslib/droplet/generate/data/ai-ad/102041271/1723411818435/xqldata/.staging_1691066243227), Overwrite, [device_id, ads_id, user_device_adv_age_year, user_device_child_age, ads_material_text_tag, ads_ad_pic_resolution, ctx_sound_patch_scene, ctx_position, album_category_id, album_nlp_labels_app]+- Repartition 500, true +- Repartition 500, true
! +- Project [device_id#62, ads_id#63, from_json(StructField(user_device_adv_age_year,StringType,true), StructField(user_device_child_age,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_adv_age_year AS user_device_adv_age_year#292, from_json(StructField(user_device_adv_age_year,StringType,true), StructField(user_device_child_age,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_child_age AS user_device_child_age#293, from_json(StructField(ads_material_text_tag,StringType,true), StructField(ads_ad_pic_resolution,StringType,true), ads_personas#70, Some(Asia/Shanghai)).ads_material_text_tag AS ads_material_text_tag#294, from_json(StructField(ads_material_text_tag,StringType,true), StructField(ads_ad_pic_resolution,StringType,true), ads_personas#70, Some(Asia/Shanghai)).ads_ad_pic_resolution AS ads_ad_pic_resolution#295, from_json(StructField(ctx_sound_patch_scene,StringType,true), StructField(ctx_position,StringType,true), ctx_personas#73, Some(Asia/Shanghai)).ctx_sound_patch_scene AS ctx_sound_patch_scene#296, from_json(StructField(ctx_sound_patch_scene,StringType,true), StructField(ctx_position,StringType,true), ctx_personas#73, Some(Asia/Shanghai)).ctx_position AS ctx_position#297, from_json(StructField(album_category_id,StringType,true), StructField(album_nlp_labels_app,StringType,true), album_personas#72, Some(Asia/Shanghai)).album_category_id AS album_category_id#298, from_json(StructField(album_category_id,StringType,true), StructField(album_nlp_labels_app,StringType,true), album_personas#72, Some(Asia/Shanghai)).album_nlp_labels_app AS album_nlp_labels_app#299] +- Project [device_id#62, ads_id#63, from_json(StructField(user_device_adv_age_year,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_adv_age_year AS user_device_adv_age_year#292, from_json(StructField(user_device_child_age,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_child_age AS user_device_child_age#293, from_json(StructField(ads_material_text_tag,StringType,true), ads_personas#70, Some(Asia/Shanghai)).ads_material_text_tag AS ads_material_text_tag#294, from_json(StructField(ads_ad_pic_resolution,StringType,true), ads_personas#70, Some(Asia/Shanghai)).ads_ad_pic_resolution AS ads_ad_pic_resolution#295, from_json(StructField(ctx_sound_patch_scene,StringType,true), ctx_personas#73, Some(Asia/Shanghai)).ctx_sound_patch_scene AS ctx_sound_patch_scene#296, from_json(StructField(ctx_position,StringType,true), ctx_personas#73, Some(Asia/Shanghai)).ctx_position AS ctx_position#297, from_json(StructField(album_category_id,StringType,true), album_personas#72, Some(Asia/Shanghai)).album_category_id AS album_category_id#298, from_json(StructField(album_nlp_labels_app,StringType,true), album_personas#72, Some(Asia/Shanghai)).album_nlp_labels_app AS album_nlp_labels_app#299]+- Filter (if ((label_click#84 = 0)) (rand(7794855199306151884) >= 0.95) else true AND (NOT (isnull(device_personas#69) AND isnull(ads_personas#70)) OR NOT isnull(ctx_personas#73))) +- Filter (if ((label_click#84 = 0)) (rand(7794855199306151884) >= 0.95) else true AND (NOT (isnull(device_personas#69) AND isnull(ads_personas#70)) OR NOT isnull(ctx_personas#73)))+- Filter ((((dt#82 >= 20230710) AND (dt#82 <= 20230712)) AND NOT coalesce(appshadow#76, ) IN (2,3)) AND ((NOT (position_name#75 = sound_agg) AND isnotnull(get_json_object(ads_personas#70, $.ads_first_trade))) AND NOT coalesce(get_json_object(ads_personas#70, $.ads_business_type), -11111) IN (1,2,3))) +- Filter ((((dt#82 >= 20230710) AND (dt#82 <= 20230712)) AND NOT coalesce(appshadow#76, ) IN (2,3)) AND ((NOT (position_name#75 = sound_agg) AND isnotnull(get_json_object(ads_personas#70, $.ads_first_trade))) AND NOT coalesce(get_json_object(ads_personas#70, $.ads_business_type), -11111) IN (1,2,3)))+- Relation[device_id#62,ads_id#63,response_id#64,track_id#65,album_id#66,imp_ts#67,click_ts#68,device_personas#69,ads_personas#70,track_personas#71,album_personas#72,ctx_personas#73,label_conv#74,position_name#75,appshadow#76,play_num#77,sub_num#78,leave_num#79,pay_num#80,live_num#81,dt#82,hour#83,label_click#84] parquet +- Relation[device_id#62,ads_id#63,response_id#64,track_id#65,album_id#66,imp_ts#67,click_ts#68,device_personas#69,ads_personas#70,track_personas#71,album_personas#72,ctx_personas#73,label_conv#74,position_name#75,appshadow#76,play_num#77,sub_num#78,leave_num#79,pay_num#80,live_num#81,dt#82,hour#83,label_click#84] parquet
可以看到最主要的转换为:
from_json(StructField(user_device_adv_age_year,StringType,true), StructField(user_device_child_age,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_adv_age_year AS user_device_adv_age_year#292, from_json(StructField(user_device_adv_age_year,StringType,true), StructField(user_device_child_age,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_child_age AS user_device_child_age#293||\/from_json(StructField(user_device_adv_age_year,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_adv_age_year AS user_device_adv_age_year#292, from_json(StructField(user_device_child_age,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_child_age AS user_device_child_age#293
from_json 中的 schema 由 StructField(user_device_adv_age_year,StringType,true), StructField(user_device_child_age,StringType,true)
分开成了
StructField(user_device_adv_age_year,StringType,true)
StructField(user_device_child_age,StringType,true)
单独的两个schema
那为什么会变慢呢?是因为JsonToStructs中的处理逻辑:
case class JsonToStructs(schema: DataType,options: Map[String, String],child: Expression,timeZoneId: Option[String] = None)extends UnaryExpression with TimeZoneAwareExpression with CodegenFallback with ExpectsInputTypeswith NullIntolerant {...@transient lazy val parser = {val parsedOptions = new JSONOptions(options, timeZoneId.get, nameOfCorruptRecord)val mode = parsedOptions.parseModeif (mode != PermissiveMode && mode != FailFastMode) {throw new IllegalArgumentException(s"from_json() doesn't support the ${mode.name} mode. " +s"Acceptable modes are ${PermissiveMode.name} and ${FailFastMode.name}.")}val (parserSchema, actualSchema) = nullableSchema match {case s: StructType =>ExprUtils.verifyColumnNameOfCorruptRecord(s, parsedOptions.columnNameOfCorruptRecord)(s, StructType(s.filterNot(_.name == parsedOptions.columnNameOfCorruptRecord)))case other =>(StructType(StructField("value", other) :: Nil), other)}val rawParser = new JacksonParser(actualSchema, parsedOptions, allowArrayAsStructs = false)val createParser = CreateJacksonParser.utf8String _new FailureSafeParser[UTF8String](input => rawParser.parse(input, createParser, identity[UTF8String]),mode,parserSchema,parsedOptions.columnNameOfCorruptRecord)}...override def nullSafeEval(json: Any): Any = {converter(parser.parse(json.asInstanceOf[UTF8String]))}
最主要关心的是 parser这个变量,因为由于上述规则的原因,两个schema单独在不同的parser中,而这里的 Child是由regexp_replace表达式组成的,所以该正则表达式会计算两次,
而由于该字段会有10多个,所以该正则表达式会被重复计算100多次(正则表达式的是比较消耗时间的)。
跳过该规则的情况下
该主要的物理计划为:
(6) Project
Output [10]: [device_id#62, ads_id#63, from_json(StructField(user_device_adv_age_year,StringType,true), StructField(user_device_child_age,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_adv_age_year AS user_device_adv_age_year#292, from_json(StructField(user_device_adv_age_year,StringType,true), StructField(user_device_child_age,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_child_age AS user_device_child_age#293, from_json(StructField(ads_material_text_tag,StringType,true), StructField(ads_ad_pic_resolution,StringType,true), ads_personas#70, Some(Asia/Shanghai)).ads_material_text_tag AS ads_material_text_tag#294, from_json(StructField(ads_material_text_tag,StringType,true), StructField(ads_ad_pic_resolution,StringType,true), ads_personas#70, Some(Asia/Shanghai)).ads_ad_pic_resolution AS ads_ad_pic_resolution#295, from_json(StructField(ctx_sound_patch_scene,StringType,true), StructField(ctx_position,StringType,true), ctx_personas#73, Some(Asia/Shanghai)).ctx_sound_patch_scene AS ctx_sound_patch_scene#296, from_json(StructField(ctx_sound_patch_scene,StringType,true), StructField(ctx_position,StringType,true), ctx_personas#73, Some(Asia/Shanghai)).ctx_position AS ctx_position#297, from_json(StructField(album_category_id,StringType,true), StructField(album_nlp_labels_app,StringType,true), album_personas#72, Some(Asia/Shanghai)).album_category_id AS album_category_id#298, from_json(StructField(album_category_id,StringType,true), StructField(album_nlp_labels_app,StringType,true), album_personas#72, Some(Asia/Shanghai)).album_nlp_labels_app AS album_nlp_labels_app#299]
Input [6]: [device_id#62, ads_id#63, device_personas#69, ads_personas#70, album_personas#72, ctx_personas#73]
如果跳过该规则的话,那么该规则不会被应用,还是以两个字段为例,所以from_json的Schema不会变:
from_json(StructField(user_device_adv_age_year,StringType,true), StructField(user_device_child_age,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_adv_age_year AS user_device_adv_age_year#292, from_json(StructField(user_device_adv_age_year,StringType,true), StructField(user_device_child_age,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_child_age AS user_device_child_age#293
其实从物理计划我们看到:其实在regexp_replace这个表达式还是会出现多次,难道不会被调用多次么?当然不会被调用多次,直接看物理计划ProjectExec:
ProjectExecprotected override def doExecute(): RDD[InternalRow] = {child.execute().mapPartitionsWithIndexInternal { (index, iter) =>val project = UnsafeProjection.create(projectList, child.output)project.initialize(index)iter.map(project)}}
该方法的调用链如下:
UnsafeProjection.create||\/
InterpretedUnsafeProjection.createProjection/GenerateUnsafeProjection.generate||\/create||\/
createCode(ctx, expressions, subexpressionEliminationEnabled)||\/
ctx.generateExpressions(expressions, useSubexprElimination)||\/
subexpressionElimination
subexpressionElimination 这里主要是提取公共表达式,也就是说后续的公共表达式的计算只会被计算一次
那对应到我们的表达式为:
Alias(GetStructField(attribute.get, i), f.name)()其中 attribute.get 为 JsonToStructs(StructType(StructField(user_device_adv_age_year,StringType,true),StructField(user_device_child_age,StringType,true)), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai))
这里的刚好能和Spark UI上显示的计划能对上:
from_json(StructField(user_device_adv_age_year,StringType,true), StructField(user_device_child_age,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_adv_age_year AS user_device_adv_age_year#292, from_json(StructField(user_device_adv_age_year,StringType,true), StructField(user_device_child_age,StringType,true), regexp_replace(device_personas#69, (?<=(\{|,))"device_, "user_device_, 1), Some(Asia/Shanghai)).user_device_child_age AS user_device_child_age#293
(主要就是调用JsonToStructs.toString的方法)
其他
- Alias 的toString方法为:
s"$child AS $name#${exprId.id}$typeSuffix$delaySuffix"
- GetStructField 的toString方法为:
val fieldName = if (resolved) childSchema(ordinal).name else s"_$ordinal"
s"$child.${name.getOrElse(fieldName)}"
-
UnresolvedStar这个类里有对 SELECT record. from (SELECT struct(a,b,c) as record …)*的解释
-
ResolveReferences 规则中的方法buildExpandedProjectList 进行 UnresolvedStar 的expand方法的调用
这里就会解析为 Alias(GetStructField(attribute.get, i), f.name)() -
具体的优化规则见Optimize Json expression chain
相关文章:

Spark 3.1.1 遇到的 from_json regexp_replace组合表达式慢问题的解决
背景 目前公司在从spark 2.4.x升级到3.1.1的时候,遇到了一类SQL极慢的情况,该SQL的如下(只列举了关键的): select device_personas.* from(selectdevice_id, ads_id, from_json(regexp_replace(device_personas, (?<(\\{|,))"devic…...
Docker 容器常用的命令和操作
1.容器操作 - 运行容器: docker run [OPTIONS] IMAGE [COMMAND] [ARG...] 示例: docker run -it --rm ubuntu /bin/bash - 查看正在运行的容器: docker ps [OPTIONS] 示例: docker ps -a - 停止容器: docker stop CONTAINER [CONTAINER...] 示…...

iTOP-RK3568开发板Windows 安装 RKTool 驱动
在烧写镜像之前首先需要安装 RKTool 驱动。 RKTool 驱动在网盘资料“iTOP-3568 开发板\01_【iTOP-RK3568 开发板】基础资料 \02_iTOP-RK3568 开发板烧写工具及驱动”路径下。 驱动如下图所示: 解压缩后,进入文件夹,如下图所示:…...
nginx rtmp http_flv直播推流
安装配置nginx yum install epel-release -y sudo rpm -Uvh http://li.nux.ro/download/nux/dextop/el7/x86_64/nux-dextop-release-0-5.el7.nux.noarch.rpm yum install ffmpeg ffmpeg-devel -y yum install gcc -y yum install pcre pcre-devel -y yum install openssl open…...

Day50 算法记录| 动态规划 17(子序列)
这里写目录标题 647. 回文子串516.最长回文子序列总结 647. 回文子串 1.动态规划和2.中心扩展 这个视频是基于上面的视频的代码 方法1:动态规划 布尔类型的dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如…...

RabbitMQ:概念和安装,简单模式,工作,发布确认,交换机,死信队列,延迟队列,发布确认高级,其它知识,集群
1. 消息队列 1.0 课程介绍 1.1.MQ 的相关概念 1.1.1.什么是MQ MQ(message queue:消息队列),从字面意思上看,本质是个队列,FIFO 先入先出,只不过队列中存放的内容是message 而已,还是一种跨进程的通信机制…...

小研究 - 基于解析树的 Java Web 灰盒模糊测试(二)
由于 Java Web 应用业务场景复杂, 且对输入数据的结构有效性要求较高, 现有的测试方法和工具在测试Java Web 时存在测试用例的有效率较低的问题. 为了解决上述问题, 本文提出了基于解析树的 Java Web 应用灰盒模糊测试方法. 首先为 Java Web 应用程序的输入数据包进行语法建模创…...
对于现有的分布式id发号器的思考 id生成器 雪花算法 uuid
在工作过程中接触了很多id生成策略,但是有一些问题 雪花id 强依赖时钟,对于时钟回拨无法很好解决 tinyid 滴滴开源,依赖mysql数据库,自增,无业务属性 uuid 生成是一个字符串没有顺序,数据库索引组织数据…...

jmeter中json提取器,获取多个值,并通过beanshell组成数组
jmeter中json提取器介绍 特别说明:**Compute concatenation var(suffix_ALL)😗*如果找到许多结果,则插件将使用’ , 分隔符将它们连接起来,并将其存储在名为 _ALL的var中 json提取器调试 在查看结果树中选择JSON Pat…...

通过nvm工具快捷切换node.js版本、以及nvm的安装
使用nvm可以实现多个Node.js版本之间切换 步骤目录: 先卸载掉本系统中原有的node版本 去github上下载nvm安装包 安装node 常用的一些nvm命令 1、先卸载掉本系统中原有的node版本 2、去github上下载nvm安装包 https://github.com/coreybutler/nvm-windows/re…...

企业如何搭建矩阵内容,才能真正实现目的?
当下,新媒体矩阵营销已成为众多企业的营销选择之一,各企业可以通过新媒体矩阵实现扩大品牌声量、维持用户关系、提高销售业绩等不同的目的。 而不同目的的矩阵,它的内容运营模式会稍有差别,评价体系也会大不相同。 企业在运营某类…...

Arduino驱动MQ5模拟煤气气体传感器(气体传感器篇)
目录 1、传感器特性 2、硬件原理图 3、驱动程序 MQ5气体传感器,可以很灵敏的检测到空气中的液化气、天然气、煤气等气体,与Arduino结合使用,可以制作火灾液化气、天然气、煤气泄露报警等相关的作品。 1、传感器特性 MQ5用于消费和工业行业中气体泄漏检测设备,该传感器适…...

Mongodb安装(Centos7)
1. 下载 MongoDB: The Developer Data Platform | MongoDB 2. 安装 上传至服务器 解压 tar -zxvf mongodb-linux-x86_64-rhel70-5.0.19.tgz 移动 mv mongodb-linux-x86_64-rhel70-5.0.19 /usr/local/mongodb 3. 配置 vim /etc/profile # set mongodb configuration expor…...

Python 批量处理JSON文件,替换某个值
Python 批量处理JSON文件,替换某个值 直接上代码,替换key TranCode的值 New 为 Update。输出 cancel忽略 import json import os import iopath D:\\Asics\\850\\202307 # old path2 D:\\test2 # new dirs os.listdir(path) num_flag 0 for file…...

凯迪正大—SF6泄漏报警装置的主要特点
SF6泄漏报警系统主要特点 ① 系统采用声速原理,可定量、实时在线测量SF6泄漏气体含量,克服了传统测量方法如负电晕放电法和卤素传感器法只能定性判别是否越限的缺陷,能够准确得到气体中SF6含量。 ② 系统采用双差分处理方法,有效…...

适配器模式与装饰器模式对比分析:优雅解决软件设计中的复杂性
适配器模式与装饰器模式对比分析:优雅解决软件设计中的复杂性 在软件设计中,我们常常面临着需要将不同接口或类协调工作的情况,同时还要满足灵活性和可扩展性的需求。为了应对这些挑战,适配器模式和装饰器模式应运而生,…...

idea使用protobuf
本文参考:https://blog.csdn.net/m0_37695902/article/details/129438549 再次感谢分享 什么是 protobuf ? Protocal Buffers(简称protobuf)是谷歌的一项技术,用于结构化的数据序列化、反序列化。 由于protobuf是跨语言的,所以用…...
【深度学习_TensorFlow】误差函数
写在前面 搭建完网络层后,在每层网络中都要进行前向计算,下一步就是选择合适的误差函数来计算误差。其中均方差函数和交叉熵函数在深度学习中比较常见,均方差函数主要用于回归问题,交叉熵函数主要用于分类问题。 写在中间 均方差…...

mysql按照日期分组统计数据
目录 前言按天统计按周统计按月统计按年统计date_format参数 前言 mysql的date_format函数想必大家都使用过吧,一般用于日期时间转化 # 例如 select DATE_FORMAT(2023-01-01 08:30:50,%Y-%m-%d %H:%i:%s) # 可以得出 2023-01-01 08:30:50# 或者是 select DATE_FOR…...
19 | 分类模型评估指标
文章目录 Python分类模型评估指标准确率(Accuracy)精确率(Precision)召回率(Recall)F1值(F1 Score)混淆矩阵(Confusion Matrix)ROC曲线和AUC值1. 准备数据集2. 初始化并训练逻辑回归模型3. 获取预测概率并计算ROC曲线和AUC值4. 绘制ROC曲线5. 整合代码结论Python分类…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...

Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...

Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
【Go语言基础【13】】函数、闭包、方法
文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数(函数作为参数、返回值) 三、匿名函数与闭包1. 匿名函数(Lambda函…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...
jmeter聚合报告中参数详解
sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...
LOOI机器人的技术实现解析:从手势识别到边缘检测
LOOI机器人作为一款创新的AI硬件产品,通过将智能手机转变为具有情感交互能力的桌面机器人,展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家,我将全面解析LOOI的技术实现架构,特别是其手势识别、物体识别和环境…...

C++_哈希表
本篇文章是对C学习的哈希表部分的学习分享 相信一定会对你有所帮助~ 那咱们废话不多说,直接开始吧! 一、基础概念 1. 哈希核心思想: 哈希函数的作用:通过此函数建立一个Key与存储位置之间的映射关系。理想目标:实现…...
前端调试HTTP状态码
1xx(信息类状态码) 这类状态码表示临时响应,需要客户端继续处理请求。 100 Continue 服务器已收到请求的初始部分,客户端应继续发送剩余部分。 2xx(成功类状态码) 表示请求已成功被服务器接收、理解并处…...