2023牛客暑期多校训练营6 A-Tree (kruskal重构树))
文章目录
- 题目大意
- 题解
- 参考代码
题目大意

( 0 ≤ a i ≤ 1 ) , ( 1 ≤ c o s t i ≤ 1 0 9 ) (0\leq a_i\leq 1),(1 \leq cost_i\leq 10^9) (0≤ai≤1),(1≤costi≤109)
题解
提供一种新的算法,kruskal重构树。
该算法重新构树,按边权排序每一条边后,
新建一个点为“两边的节点所在最大节点”的父节点,该点点权为该边边权。
该树有一些特征:
①:是一个二叉树。
③:原节点全部为叶节点。
②:两个节点的LCA的点权就是其原最短路径的最大边权。
具体 Kruskal 算法学习
建树可以用并查集计算。
了解了这个算法我们再看问题,要求最大边权,这点可以用kruskal维护。
对于某个不为叶节点的节点 x x x ,它左儿子与右儿子匹配的黑白节点的最大边权显然为 w x w_x wx 。
显然的,我们可以枚举左右儿子节点中的黑白节点个数,乘上点权,即为该点的贡献。
我们发现答案可以通过 d f s dfs dfs 顺序从下往上来求解,且不会造成前效性,所以树形DP可以很好的解决这道题。
设 d p x , b dp_{x,b} dpx,b 表示在 x x x 的子树内有 b b b 个黑色节点的最优解。
d p x , b = m a x ( d p s o n , b l a c k 1 + d p s o n , b 2 + w x ∗ ( b l a c k 1 ∗ w h i t e 2 + b l a c k 2 ∗ w h i t e 1 ) ) dp_{x,b}=max(dp_{son,black1}+dp_{son,b2}+w_x*(black1*white2+black2*white1)) dpx,b=max(dpson,black1+dpson,b2+wx∗(black1∗white2+black2∗white1))
white/black_1/2表示1/2的子树中有几个白色/黑色节点
且black1+black2=b
我们发现枚举 b b b 的黑白分布情况,最多需要合并 m i n ( s u m s o n l , s u m s o n r ) min(sum_{sonl},sum_{sonr}) min(sumsonl,sumsonr)次,
不然的话就需要从大的部分取一部分给数量少的一颗子树。
特殊的,对于叶节点
d p x , b = ( w x = = b ˆ 1 ) ∗ − c o s t x dp_{x,b}=(w_x==b \^\ 1)*-cost_x dpx,b=(wx==b ˆ1)∗−costx
剩下的就好处理多了,写个DFS遍历一下即可处理。
计算时间复杂度,对于kruskal重构树,合并时长度最大为 l o g n log_n logn
即时间复杂度为 O ( N 2 l o g N ) O(N^2log_N) O(N2logN) 可以通过。
参考代码
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N=6e3+5;
const int inf=1e18+7;
struct node{int x,y,w;
}f[N];
int fa[N],cost[N];
int w[N];
int n,m,t,ans;
int sonl[N],sonr[N];
int sum[N];
int dp[N][3000];
void dfs(int x)
{if(x<=n) //叶节点{dp[x][0]=(w[x]==1)*(-cost[x]);dp[x][1]=(w[x]==0)*(-cost[x]);
// cout<<x<<" "<<0<<" "<<dp[x][0]<<endl;
// cout<<x<<" "<<1<<" "<<dp[x][1]<<endl;sum[x]=1;}else{dfs(sonl[x]);dfs(sonr[x]);int res=min(sum[sonl[x]],sum[sonr[x]]); //启发式合并平均复杂度为log_nsum[x]=sum[sonl[x]]+sum[sonr[x]];for(int i=0;i<=sum[sonl[x]];i++)for(int j=0;j<=sum[sonr[x]];j++)dp[x][i+j]=-inf;for(int i=0;i<=sum[sonl[x]];i++) //枚举黑色节点个数{for(int j=0;j<=sum[sonr[x]];j++) //DP转移{int s=dp[sonl[x]][i]+dp[sonr[x]][j]+w[x]*(i*(sum[sonr[x]]-j)+(sum[sonl[x]]-i)*j);dp[x][i+j]=max(dp[x][i+j],s);ans=max(ans,dp[x][i+j]);}} }
}
int cmp(node a,node b)
{return a.w<b.w;
}
int sf(int x)
{if(fa[x]==x)return x;return fa[x]=sf(fa[x]);
}
signed main()
{cin>>n;for(int i=1;i<=n;i++)scanf("%lld",&w[i]);for(int i=1;i<=n;i++)scanf("%lld",&cost[i]);for(int i=1;i<n;i++)scanf("%lld%lld%lld",&f[i].x,&f[i].y,&f[i].w);sort(f+1,f+n,cmp);t=n;for(int i=1;i<=2*n;i++)fa[i]=i;for(int i=1;i<n;i++) //kruskal构树{int x=sf(f[i].x),y=sf(f[i].y);fa[x]=++t;fa[y]=t;w[t]=f[i].w;sonl[t]=x;sonr[t]=y;}dfs(t);printf("%lld",ans);
}
相关文章:
2023牛客暑期多校训练营6 A-Tree (kruskal重构树))
文章目录 题目大意题解参考代码 题目大意 ( 0 ≤ a i ≤ 1 ) , ( 1 ≤ c o s t i ≤ 1 0 9 ) (0\leq a_i\leq 1),(1 \leq cost_i\leq 10^9) (0≤ai≤1),(1≤costi≤109) 题解 提供一种新的算法,kruskal重构树。 该算法重新构树,按边权排序每一条边…...
软件测试—支付功能测试
有人问过我这样一个问题:作为一个支付平台,接入了快钱、易宝或直连银行等多家的渠道,内在的产品流程是自己的。业内有什么比较好的测试办法,来测试各渠道及其支持的银行通道呢? 回答:对支付平台而言&#…...
自动化测试的统筹规划
背景 回顾以前自动化测试编写的经历,主要是以开发者自驱动的方式进行,测试的编写随心而动,没有规划,也没有章法,这样就面临如下的一些问题: 测试用例设计不到位,覆盖不全,或者不够…...
外键字段的增删改查、多表查询(子查询和连表查询、正反向、聚合查询、 分组查询、 F与Q查询)、django中如何开启事务
一、 外键字段的增删改查 1.多对多的外键增删改查图书和作者是多对多,借助于第三张表实现的,如果想绑定图书和作者的关系,本质上就是在操作第三方表2.如何操作第三张表问题:让你给图书添加一个作者,他俩的关系可是多对…...
【学习笔记】生成式AI(ChatGPT原理,大型语言模型)
ChatGPT原理剖析 语言模型 文字接龙 ChatGPT在测试阶段是不联网的。 ChatGPT背后的关键技术:预训练(Pre-train) 又叫自监督式学习(Self-supervised Learning),得到的模型叫做基石模型(Founda…...
【Opencv入门到项目实战】(三):图像腐蚀与膨胀操作
文章目录 1.腐蚀操作2.膨胀操作3.开运算和闭运算4.礼帽与黑帽5.梯度运算 1.腐蚀操作 腐蚀操作是图像处理中常用的一种形态学操作,我们通常用于去除图像中的噪声、分割连通区域、减小目标物体的尺寸等。腐蚀操作的原理是,在给定的结构元素下,…...
Autosar诊断系列介绍20 - UDS应用层P2Server/P2Client等时间参数解析
本文框架 1. 前言2.几个时间参数含义2.1 P2Client与P2Server2.2 P2*Client与P2*Server2.3 P3Client_Phys与P3Client_Func2.4 S3Client与S3Server 1. 前言 本系列Autosar 诊断入门介绍,会详细介绍诊断相关基础知识,如您对诊断实战有更高需求,…...
【iOS】json数据解析以及简单的网络数据请求
文章目录 前言一、json数据解析二、简单的网络数据请求三、实现访问API得到网络数据总结 前言 近期写完了暑假最后一个任务——天气预报,在里面用到了简单的网络数据请求以及json数据的解析,特此记录博客总结 一、json数据解析 JSON是一种轻量级的数据…...
Kubernetes客户端认证—— 基于ServiceAccount的JWTToken认证
1、概述 在 Kubernetes 官方手册中给出了 “用户” 的概念,Kubernetes 集群中存在的用户包括 “普通用户” 与 “ServiceAccount”, 但是 Kubernetes 没有普通用户的管理方式,通常只是将使用集群根证书签署的有效证书的用户都被视为合法用户。…...
45.ubuntu Linux系统安装教程
目录 一、安装Vmware 二、Linux系统的安装 今天开始了新的学习,Linux,下面是今天学习的内容。 一、安装Vmware 这里是在 Vmware 虚拟机中安装 linux 系统,所以需要先安装 vmware 软件,然 后再安装 Linux 系统。 所需安装文件:…...
Jmeter函数助手(一)随机字符串(RandomString)
一、目标 实现一个请求单次调用,请求体里多个集合中的相同参数(zxqs)值随机从序列{01、02、03、03、04、05、06、07、08}中取 若使用CSV数据文件、用户参数等参数化手段,单次执行请求,请求体里多个集合中的相同参数&a…...
SpringCloud之微服务API网关Gateway介绍
文章目录 1 微服务API网关Gateway1.1 网关简介1.2 Spring Cloud Gateway介绍1.3 Gateway特性1.4 Gateway核心概念1.4.1 路由1.4.1.1 定义1.4.1.2 动态路由 1.4.2 断言1.4.2.1 默认断言1.4.2.2 自定义Predicate 1.4.3 过滤器1.4.3.1 默认过滤器1.4.3.2 自定义Filter(…...
机器学习入门之 pandas
pandas 有三种数据结构 一种是 Series 一种是 Dataframe import pandas as pd import numpy as np score np.random.randint(0,100,[10,5])score[0,0] 100Datascore pd.DataFrame(score)subject ["语文","数学","英语","物理&quo…...
Django之JWT库与SimpleJWT库的使用
Django之JWT库与SimpleJWT库的使用 JWTJWT概述头部(header)载荷(payload)签名(signature) Django使用JWT说明jwt库的使用安装依赖库配置settings.py文件配置urls.py文件创建视图配置权限 SimpleJWT库的使用安装SimpleJWT库配置Django项目配置路由创建用户接口测试身份认证自定义…...
Jmeter远程服务模式运行时引用csv文件的路径配置
问题 在使用jmeter过程中,本机的内存等配置不足,启动较多的线程时,可以采用分布式运行。 在分布式运行的时候,jmeter会自动将脚本从master主机发送到remote主机上,所以不需要考虑将脚本拷贝到remote主机。但是jmeter…...
《OWASP代码审计》学习——注入漏洞审计
一、注入的概念 注入攻击允许恶意用户向应用程序添加或注入内容和命令,以修改其行为。这些类型的攻击是常见且广泛的,黑客很容易测试网站是否易受攻击,攻击者也很容易利用这些攻击。如今,它们在尚未更新的遗留应用程序中非常常见…...
Linux虚拟机中安装MySQL5.6.34
目录 第一章、xshell工具和xftp的使用1.1)xshell下载与安装1.2)xshell连接1.3)xftp下载安装和连接 第二章、安装MySQL5.6.34(不同版本安装方式不同)2.1)关闭防火墙,传输MySQL压缩包到Linux虚拟机2.2&#x…...
Django的FBV和CBV
Django的FBV和CBV 基于django开发项目时,对于视图可以使用 FBV 和 CBV 两种模式编写。 FBV,function base views,其实就是编写函数来处理业务请求。 from django.contrib import admin from django.urls import path from app01 import view…...
[每周一更]-(第57期):用Docker、Docker-compose部署一个完整的前后端go+vue分离项目
文章目录 1.参考项目2.技能点3.GO的Dockerfile配置后端的结构如图Dockerfile先手动docker调试服务是否可以启动报错 4.Vue的Dockerfile配置前端的结构如图nginx_docker.confDockerfile构建 5.docker-compose 整合前后端docker-compose.yml错误记录(1)ip端…...
springboot-mybatis的增删改查
目录 一、准备工作 二、常用配置 三、尝试 四、增删改查 1、增加 2、删除 3、修改 4、查询 五、XML的映射方法 一、准备工作 实施前的准备工作: 准备数据库表 创建一个新的springboot工程,选择引入对应的起步依赖(mybatis、mysql驱动…...
观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...
