【Deepsort】C++版本Deepsort编译(依赖opencv,eigen3)
目录
- 下载源码
- 安装onnxruntime
- 安装Eigen3
- 编译opencv
下载源码
https://github.com/shaoshengsong/DeepSORT
安装onnxruntime
安装方法参考博客
安装Eigen3
当谈及线性代数计算库时,Eigen3是一个强大而受欢迎的选择。Eigen3是一个C++模板库,提供了许多用于线性代数运算的功能,如向量、矩阵、矩阵运算、线性方程组求解等。以下是Eigen3的一些主要特点和功能:
高性能:Eigen3使用了优化的算法和技术,具有出色的运行速度和高效的内存使用。它通过使用表达式模板技术来在编译时生成高效的计算代码,避免了一些运行时的开销。
简洁易用:Eigen3提供了直观且易于使用的API,使得进行线性代数计算变得简单和直观。它的API设计简洁明了,提供了丰富的运算符重载和友好的语法,使得代码编写更加简单和可读。
广泛的功能:Eigen3支持多种线性代数运算,包括向量和矩阵的基本运算、线性方程组的求解、特征值和特征向量的计算、矩阵分解(如LU分解、QR分解等)、广义特征值问题的求解等。它还提供了一些高级功能,如支持稀疏矩阵和动态大小矩阵等。
跨平台支持:Eigen3是一个跨平台的库,可以在各种操作系统和编译器上使用。它使用标准的C++语法和特性,并且不依赖于任何特定的硬件或操作系统。
开源免费:Eigen3是一个开源库,遵循MPL2.0协议,可以免费使用和修改。它的源代码可在GitHub上获得,方便用户进行定制和扩展。
Eigen3已被广泛应用于科学计算、机器学习、计算机图形学等领域。无论是在学术研究还是实际应用中,Eigen3都是一个强大而可靠的线性代数库。
sudo apt-get install libeigen3-dev
编译opencv
编译命令:下载opencv4的源码包后解压,并下载contrib扩展包,开启dnn
读取视频需要安装ffmpeg:
sudo apt-get install build-essential
sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev
sudo apt-get install python-dev python-numpy libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev
对于libjasper-dev安装失败:
apt-get install software-properties-common
add-apt-repository "deb http://security.ubuntu.com/ubuntu xenial-security main"
apt update
apt-get install libjasper-dev
sudo apt-get install ffmpeg
获取ffmpeg的相关安装目录:
pkg-config --cflags libavformat
编译:
cmake -DCMAKE_BUILD_TYPE=Release -DOPENCV_EXTRA_MODULES_PATH=/home/opencv_contrib-4.7.0/opencv_contrib-4.7.0/modules -DWITH_OPENCL=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_WITH_DEBUG_INFO=OFF -DBUILD_TESTS=OFF -DWITH_1394=OFF -DWITH_CUDA=OFF -DWITH_CUBLAS=OFF -DWITH_CUFFT=OFF -DWITH_OPENCLAMDBLAS=OFF -DWITH_OPENCLAMDFFT=OFF -DINSTALL_C_EXAMPLES=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_TO_MANGLED_PATHS=OFF -DBUILD_ANDROID_EXAMPLES=OFF -DBUILD_opencv_python=OFF -DBUILD_opencv_python_bindings_generator=OFF -DBUILD_opencv_apps=OFF -DBUILD_opencv_calib3d=OFF -DBUILD_opencv_features2d=OFF -DBUILD_opencv_flann=OFF -DBUILD_opencv_java_bindings_generator=OFF -DBUILD_opencv_js=OFF -DBUILD_opencv_ml=OFF -DBUILD_opencv_objdetect=OFF -DBUILD_opencv_photo=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_python_tests=OFF -DBUILD_opencv_shape=OFF -DBUILD_opencv_stitching=OFF -DBUILD_opencv_superres=OFF -DBUILD_opencv_ts=OFF -DBUILD_opencv_videostab=OFF -DBUILD_opencv_world=ON -DBUILD_opencv_dnn=ON -D WITH_FFMPEG=ON -D WITH_TIFF=OFF -D BUILD_TIFF=OFF -DWITH_FFMPEG=ON -DFFMPEG_LIBRARIES=/usr/local/lib/ -D FFMPEG_INCLUDE_DIRS=/usr/local/include/ ..make install
更改deepsort对应的cpp文件:
#include <fstream>
#include <sstream>
#include <opencv2/imgproc.hpp>
#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
#include "YOLOv5Detector.h"#include "FeatureTensor.h"
#include "BYTETracker.h" //bytetrack
#include "tracker.h"//deepsort
//Deep SORT parameterconst int nn_budget=100;
const float max_cosine_distance=0.2;void get_detections(DETECTBOX box,float confidence,DETECTIONS& d)
{DETECTION_ROW tmpRow;tmpRow.tlwh = box;//DETECTBOX(x, y, w, h);tmpRow.confidence = confidence;d.push_back(tmpRow);
}void test_deepsort(cv::Mat& frame, std::vector<detect_result>& results,tracker& mytracker)
{std::vector<detect_result> objects;DETECTIONS detections;for (detect_result dr : results){//cv::putText(frame, classes[dr.classId], cv::Point(dr.box.tl().x+10, dr.box.tl().y - 10), cv::FONT_HERSHEY_SIMPLEX, .8, cv::Scalar(0, 255, 0));if(dr.classId == 0) //person{objects.push_back(dr);cv::rectangle(frame, dr.box, cv::Scalar(255, 0, 0), 2);get_detections(DETECTBOX(dr.box.x, dr.box.y,dr.box.width, dr.box.height),dr.confidence, detections);}}std::cout<<"begin track"<<std::endl;if(FeatureTensor::getInstance()->getRectsFeature(frame, detections)){std::cout << "get feature succeed!"<<std::endl;mytracker.predict();mytracker.update(detections);std::vector<RESULT_DATA> result;for(Track& track : mytracker.tracks) {if(!track.is_confirmed() || track.time_since_update > 1) continue;result.push_back(std::make_pair(track.track_id, track.to_tlwh()));}for(unsigned int k = 0; k < detections.size(); k++){DETECTBOX tmpbox = detections[k].tlwh;cv::Rect rect(tmpbox(0), tmpbox(1), tmpbox(2), tmpbox(3));cv::rectangle(frame, rect, cv::Scalar(0,0,255), 4);// cvScalar的储存顺序是B-G-R,CV_RGB的储存顺序是R-G-Bfor(unsigned int k = 0; k < result.size(); k++){DETECTBOX tmp = result[k].second;cv::Rect rect = cv::Rect(tmp(0), tmp(1), tmp(2), tmp(3));rectangle(frame, rect, cv::Scalar(255, 255, 0), 2);std::string label = cv::format("%d", result[k].first);cv::putText(frame, label, cv::Point(rect.x, rect.y), cv::FONT_HERSHEY_SIMPLEX, 0.8, cv::Scalar(255, 255, 0), 2);}}}std::cout<<"end track"<<std::endl;
}void test_bytetrack(cv::Mat& frame, std::vector<detect_result>& results,BYTETracker& tracker)
{std::vector<detect_result> objects;for (detect_result dr : results){if(dr.classId == 0) //person{objects.push_back(dr);}}std::vector<STrack> output_stracks = tracker.update(objects);for (unsigned long i = 0; i < output_stracks.size(); i++){std::vector<float> tlwh = output_stracks[i].tlwh;bool vertical = tlwh[2] / tlwh[3] > 1.6;if (tlwh[2] * tlwh[3] > 20 && !vertical){cv::Scalar s = tracker.get_color(output_stracks[i].track_id);cv::putText(frame, cv::format("%d", output_stracks[i].track_id), cv::Point(tlwh[0], tlwh[1] - 5),0, 0.6, cv::Scalar(0, 0, 255), 2, cv::LINE_AA);cv::rectangle(frame, cv::Rect(tlwh[0], tlwh[1], tlwh[2], tlwh[3]), s, 2);}}}
int main(int argc, char *argv[])
{//deepsorttracker mytracker(max_cosine_distance, nn_budget);//bytetrackint fps=20;BYTETracker bytetracker(fps, 30);//-----------------------------------------------------------------------// 加载类别名称std::vector<std::string> classes;std::string file="./coco_80_labels_list.txt";std::ifstream ifs(file);if (!ifs.is_open())CV_Error(cv::Error::StsError, "File " + file + " not found");std::string line;while (std::getline(ifs, line)){classes.push_back(line);}//-----------------------------------------------------------------------std::cout<<"classes:"<<classes.size();std::shared_ptr<YOLOv5Detector> detector(new YOLOv5Detector());detector->init("/home/DeepSORT-master/DeepSORT-master/build/yolov5x.onnx");std::cout<<"begin read video"<<std::endl;const std::string source = "/home/DeepSORT-master/DeepSORT-master/build/test.mp4";cv::VideoCapture capture(source);if (!capture.isOpened()) {printf("could not read this video file...\n");return -1;}std::cout<<"end read video"<<std::endl;std::vector<detect_result> results;int num_frames = 0;cv::VideoWriter video("out.avi",cv::VideoWriter::fourcc('M','J','P','G'),10, cv::Size(1920,1080));while (true){cv::Mat frame;if (!capture.read(frame)) // if not success, break loop{std::cout<<"\n Cannot read the video file. please check your video.\n";break;}num_frames ++;//Second/Millisecond/Microsecond 秒s/毫秒ms/微秒usauto start = std::chrono::system_clock::now();detector->detect(frame, results);auto end = std::chrono::system_clock::now();auto detect_time =std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();//msstd::cout<<classes.size()<<":"<<results.size()<<":"<<num_frames<<std::endl;//test_deepsort(frame, results,mytracker);test_bytetrack(frame, results,bytetracker);//cv::imshow("YOLOv5-6.x", frame);video.write(frame);if(cv::waitKey(30) == 27) // Wait for 'esc' key press to exit{break;}results.clear();}capture.release();video.release();cv::destroyAllWindows();}
编译并运行:
相关文章:
【Deepsort】C++版本Deepsort编译(依赖opencv,eigen3)
目录 下载源码安装onnxruntime安装Eigen3编译opencv 下载源码 https://github.com/shaoshengsong/DeepSORT安装onnxruntime 安装方法参考博客 安装Eigen3 当谈及线性代数计算库时,Eigen3是一个强大而受欢迎的选择。Eigen3是一个C模板库,提供了许多用…...
Synchronized锁升级过程
无锁状态(无锁):当一个线程访问一个没有被锁定的Synchronized代码块时,处于无锁状态。此时,线程可以直接进入临界区执行代码,不需要进行任何锁协调。 偏向锁状态(偏向锁)࿱…...

汽车电子功能安全
功能安全考虑 分析方法:FMEA,DFMEA(设计潜在失效模式和影响分析) 严重度(Severity),暴露率(Exposure),可控性(Controllability)评估…...

ARM进阶:内存屏障(DMB/DSB/ISB)的20个使用例子详解
在上一节内存屏障指令之DMB、DSB和ISB详解中,介绍了一下内存屏障的三个指令的作用并举了一些例子,对于内存屏障指令的使用时机,与处理器架构(比如Cortex-M和Cortex-A)和处理器的系统实现(同样的架构,有不同的实现,如ST…...

Cpp学习——模板
模板? 目录 模板? 1.介绍 2.函数模板的使用 3.函数模板的强制转换or显式调用 四,模板的分类 1.介绍 在Cpp3.0中,祖师爷便引入了模板的概念。这是一个重大的变革,为后来的Cpp标准化打下了铺垫。也正是因为有了模板࿰…...
HTTP 协议 版本详解
HTTP 协议 介绍<一> 简介 HTTP(Hypertext Transfer Protocol)是一种用于在客户端和服务器之间进行通信的协议。它是现代互联网中最常用的应用层协议之一。HTTP 的主要目的是实现超文本资源的传输,例如 HTML 文档、图像和音频文件等。…...

PHP语言基础知识(超详细)
文章目录 前言第一章 PHP语言学习介绍 1.1 PHP部署安装环境1.2 PHP代码工具选择 第二章 PHP代码基本语法 2.1 PHP函数知识介绍2.2 PHP常量变量介绍 2.2.1 PHP变量知识:2.2.2 PHP常量知识: 2.3 PHP注释信息介绍2.4 PHP数据类型介绍 2.4.1 整形数据类型2.4…...

Flex弹性盒子的项目属性
最近在写项目时用到了弹性盒子的项目属性,记录一下,以后用到继续扩充 <div class"concern-data"><div><img src"https://meituan.thexxdd.cn/lvyou/assets/pinglun-fc62482a.svg" alt""><span>1&…...

广州银行信用卡中心:强化数字引擎安全,实现业务稳步增长
广州银行信用卡中心是全国城商行中仅有的两家信用卡专营机构之一,拥有从金融产品研发至销售及后期风险控制、客户服务完整业务链条,曾获“2016年度最佳创新信用卡银行”。 数字引擎驱动业务增长 安全左移降低开发风险 近年来,广州银行信用卡…...
【Rust日报】2023-08-03 - Polars 获约 400 万美元种子轮融资
文章:2023 年对 Rust 编译器 CI 的改进 kobzol 的新文章,介绍了关于优化 Rust 编译器构建、测试和性能监视基础设施的方案和实施情况。 根据作者的工作,文章内容分为三类: Rust 编译器(rustc)构建配置、 Ru…...

装修小程序,开启装修公司智能化服务的新时代
随着数字化时代的来临,装修小程序成为提升服务质量和效率的关键工具。装修小程序旨在为装修公司提供数字化赋能、提高客户满意度的智慧装修平台。通过装修小程序,装修公司能够与客户进行在线沟通、展示设计方案、提高服务满意度等操作。 装修小程序的好处…...
使用PHP和Redis实现简单秒杀功能
安装Redis 首先,需要在服务器上安装Redis。如果使用Linux系统,可以使用命令行安装。如果使用Windows系统,可以下载并安装Redis二进制文件。 创建Redis连接 在PHP中,可以使用Redis扩展来连接Redis服务器。需要在PHP文件中包含Re…...
C#开发FFMPEG例子(API方式) FFmpeg拉取udp组播流并播放
代码及工程见https://download.csdn.net/download/daqinzl/88168680 开发工具:visual studio 2019 网上用C/C调用FFmpeg的API例子很多, c#使用ffmpeg.autogen的方式很简单,直接复制C/C调用FFmpeg的API的代码到C#中,然后在FFmpeg…...

Android性能优化—图片优化
图片优化是内存优化中很重要的一部分,加载Bitmap时往往需要消耗大量的内存,稍不注意就容易导致内存溢出(OOM)。 一、图片OOM问题产生 1、 一个页面一次加载过多图片; 2、加载大图片没有进行压缩(尺寸,质…...

如何搭建自动化测试框架?资深测试整理的PO模式,一套打通自动化...
目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 Po模型介绍 1、简…...

软件外包开发的GO语言特点
Go语言(也称为Golang)是由Google开发的一种编程语言。它具有许多特点,使其成为许多项目范围的优秀选择。Go语言适用于需要高性能、并发和简洁易读的项目,特别是面向网络和分布式应用的项目。今天和大家分享项目的特点及适用的项目…...

【深度学习Week4】MobileNet_ShuffleNet
报错:unsafe legacy renegotiation disabled 解决方案: 尝试了更换cryptography36.0.2版本,以及更换下载链接的方法,都不行,最后采用了手动下载mat文件并上传到colab的方法 高光谱图像分类数据集简介Indian Pines&…...

649. Dota2 参议院
题目描述: 主要思路: 这是一个按照题意模拟的问题,利用队列模拟议员的投票顺序即可。 class Solution { public:string predictPartyVictory(string senate) {queue<int> r,d;int nsenate.length();for(int i0;i<n;i){if(senate[i…...

无人机管控平台,推动电力巡检管理水平提升
各地区无人机作业水平和管理水平存在参差不齐,电力巡检管理要求与业务发展水平不匹配的问题。同时,巡检数据的存储和管理分散,缺乏有效的整合与共享手段,使得内外业脱节,没有形成统一应用和闭环管理。这就导致巡检数据…...

阿里云平台WoSignSSL证书应用案例
沃通CA与阿里云达成合作并在阿里云平台上线WoSign品牌SSL证书。自上线以来,WoSignSSL证书成为阿里云“数字证书管理服务”热销证书产品,获得阿里云平台客户认可,助力阿里云平台政府、金融、教育、供应链、游戏等各类行业客户实现网站系统数据…...

Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...
STM32+rt-thread判断是否联网
一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
ip子接口配置及删除
配置永久生效的子接口,2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

【 java 虚拟机知识 第一篇 】
目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...
Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?
Pod IP 的本质与特性 Pod IP 的定位 纯端点地址:Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址(如 10.244.1.2)无特殊名称:在 Kubernetes 中,它通常被称为 “Pod IP” 或 “容器 IP”生命周期:与 Pod …...

【LeetCode】算法详解#6 ---除自身以外数组的乘积
1.题目介绍 给定一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O…...

Xcode 16 集成 cocoapods 报错
基于 Xcode 16 新建工程项目,集成 cocoapods 执行 pod init 报错 ### Error RuntimeError - PBXGroup attempted to initialize an object with unknown ISA PBXFileSystemSynchronizedRootGroup from attributes: {"isa">"PBXFileSystemSynchro…...