整理mongodb文档:collation
文章连接
整理mongodb文档:collation
看前提示
对于mongodb的collation。个人主要用的范围是在createcollection,以及find的时候用,所以本片介绍的时候也是这两个地方入手,对新手个人觉得理解概念就好。不要求强制性掌握,但是要看到的时候知道这个是什么意思。
关于Collation
先看一下官网中对于Collation的介绍
Collation allows users to specify language-specific rules for string
comparison, such as rules for lettercase and accent marks.
排序规则允许用户为字符串比较指定特定于语言的规则,例如大小写和重音标记的规则。
对于重音标记,指的是类似德语中的“ö”这样的,但我们项目比较少出现这样的,因此剩下的就是大小写的考虑了。
collation的参数
locale: <string>, caseLevel: <boolean>,caseFirst: <string>, strength: <int>, numericOrdering: <boolean>, alternate: <string>, maxVariable: <string>, backwards: <boolean>
locale,指的是我们所选用的地区的代码,比如中国是zh,美国那边就是en,而当我们选用二进制的格式的时候,需要设置的是’simple’.当使用’simple’的时候,也就不再需要设置别的参数了。
strength,总共有五个挡位,当我们设置值为1跟2的时候,可以理解为不比较大小写,而当为3,4,5的时候可以理解为需要比较大小写。默认值是3,当然实际1与2,3-5之间都有差距,只是对我们来说差距不大。相当于越大越严格。
caseFirst,大小写的问题,数据的大小写谁在前,谁在后,当值为’upper’,大写排在小写前面,当值为’lower’,小写排在大写的前面。当值为’off’,表示关闭。
暂时的介绍就这些,其他的希望大家自己看,接下来是介绍两三个例子作为实操,先准备几条数据,分别是
{ "string": "a", "sort": "1" },
{ "string": "B", "sort": "2" },
{ "string": "C", "sort": "3" },
{ "string": "d", "sort": "4" }
接下来创建一个最基本的collection。尝试将这四个数据加进去。
对比了下查询出来的数据,我们插入的时候用的是sort按照1234的顺序插入的。但是当我们用sort({string:1})查询数据的时候,返回的却是先大写,然后是小写。就是系统区分了大小写,先大写再小写,这样子我们大概可以立即为根据二进制进行排序返回了。
接着删除这个collection,重新生成一个新的collection,但是使用下面的指令来生成
db
.createCollection("blog",
{collation:{ "locale": "en", strength : 1}})
接着继续重新插入数据,然后依旧是上面的查询数据
可以看到两次的查询语句都一样,但是出现了不同的结果,这是因为我们创造collection的时候,使用了不同的collation。
第一次使用的是默认的locale=simple,根据二进制的规则,先大写后小写。
而第二次的时候,我们直接无视大小写,也就出现了先a后B的情况。具体的应用场景还有很多,只是这个最为经典,最适合做例子罢了。
同样的道理,当我们用一个既定的collation来查询一个数据的时候,我们也可以使用到特定的collation来查询。使用的方法如下:
db.blog.find()
.sort({string:1})
.collation({locale:'zh',strength:1})
最后
collation的最大作用是在让我们按照自己的规则来查询,创建集合,如果是做crud,需要做大小写区分的时候可以考虑这个,而不需要使用正则,但是注意下版本,一般都是支持的。
本文数据来源:mongodb官网
相关文章:

整理mongodb文档:collation
文章连接 整理mongodb文档:collation 看前提示 对于mongodb的collation。个人主要用的范围是在createcollection,以及find的时候用,所以本片介绍的时候也是这两个地方入手,对新手个人觉得理解概念就好。不要求强制性掌握,但是要…...
【LangChain】Prompts之Prompt templates
Prompts 编程模型的新方法是通过提示(prompts)。 prompts是指模型的输入。该输入通常由多个组件构成。 LangChain 提供了多个类和函数,使构建和使用prompts变得容易。 Prompt templates(提示模板): 参数化模型输入Example selectors(选择器示例): 动态选择要包含在…...
【数字IC基础】时序违例的修复
时序违例的修复 建立时间违例保持时间违例Buffer 插入位置参考资料 建立时间违例 基本思路是减少数据线的延时、减少 Launch clock line 的延时、增加capture clock line的delay 加强约束,重新进行综合,对违规的路径进行进一步的优化,但是一…...

深度学习实战46-基于CNN的遥感卫星地图智能分类,模型训练与预测
大家好,我是微学AI,今天给大家介绍一下深度学习实战46-基于CNN的遥感卫星地图智能分类,模型训练与预测。随着遥感技术和卫星图像获取能力的快速发展,卫星图像分类任务成为了计算机视觉研究中一个重要的挑战。为了促进这一领域的研究进展,EuroSAT数据集应运而生。本文将详细…...
Node.js-fs模块文件创建、删除、重命名、文件内容的写入、读取以及文件夹的相关操作
一、写入文件操作 异步写入:writeFile() 同步写入:writeFileSync() const fs require("fs"); fs.writeFile("目标文件路径", "要写入的内容", err > {if(err){console.log(err);return;}console.log("写入成功&a…...

LIN协议总结
目录 一、LIN是什么1、LIN的概念2、扩展介绍一下同步通信和异步通信的区别3、LIN连接结构及节点构成 二、LIN的特点三、LIN协议层1、帧的结构2、帧的类型3、进度表4、状态机实现5、网络管理6、状态管理 四、帧收发的硬件实现1、组成2、硬件特点3、协议控制器4、总线收发器5、LI…...

Redis BigKey案例
面试题: 阿里广告平台,海量数据里查询某一固定前缀的key小红书,你如何生产上限制keys*/flushdb/flushall等危险命令以防止误删误用?美团,MEMORY USAGE命令你用过吗?BigKey问题,多大算big&#…...

ThinkPHP v6.0.8 CacheStore 反序列化漏洞
漏洞说明 1. 漏洞原理:ThinkPHP 6.0.8 CacheStore 会触发POP利用链子,造成任意命令执行 2. 组件描述: ThinkPHP是一个免费开源的,快速、简单的面向对象的轻量级PHP开发框架 3. 影响版本:V6.0.8 漏洞复现 1. 环境安…...

Spring 事务详解(注解方式)
目 录 序言 1、编程式事务 2、配置声明式事务 2.1 基于TransactionProxyFactoryBean的方式(不常用,因为要为每一个类配置TransactionProxyFactoryBean) 2.2 基于AspectJ的XML方式(常用,可配置在某些类下的所有子…...
华为云waf 使用场景
防护Web应用免受攻击就用华为云Web应用防火墙 Web应用防火墙(Web Application Firewall, WAF),通过对HTTP(S)请求进行检测,识别并阻断SQL注入、跨站脚本攻击、网页木马上传、命令/代码注入、文件包含、敏感文件访问、第…...
?.的写法 后缀修饰符
概览:处理后端返回的数据data,写法:data?.name。解决vue框架编译出现的报错Cannot read property name of undefined。出现问题的原因:这是因为我们试图访问对象中不在的 key 为 name 的属性,那么怎么解决呢ÿ…...

org.apache.hadoop.hive.ql.exec.DDLTask. show Locks LockManager not specified解决
Error while processing statement: FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. show Locks LockManager not specified解决 当在Hive中执行show locks语句时,出现"LockManager not specified"错误通常是由于…...

Adaptive autosar 都有哪些模块?各有什么功能?
Adaptive autosar是一种用于高性能计算ECU的软件平台,它支持自适应应用程序的开发和运行。它由两部分组成:基础(Foundation)和服务(Service)。基础包括了操作系统接口、执行管理、网络管理、识别访问管理、加密、更新和配置管理等功能。服务包括了通信管理、RESTful、时间…...

C++ 动态内存分配
在C中动态内存的分配技术可以保证程序在允许过程中按照实际需要申请适量的内存,使用结束后还可以释放,这种在程序运行过程中申请和释放的存储单元也称为堆。 申请和释放过程一般称为建立和删除。 在C程序中,建立和删除堆对象使用两个运算符&…...
设计模式——面向对象的7大设计原则
1.单一职责原则 一个类中最好只放一种类型的方法,比如Dao中只有和数据库交互相关的代码。实现高内聚,低耦合。 2.开闭原则 对外拓展开放,对内修改关闭,有新的需求时不要修改已有代码,而是添加新的代码,比…...

智慧防汛,数字科技的力量
随着夏日的脚步临近,台风季节即将降临。对于那些居住在沿海地区的人们来说,台风是一种常见的自然灾害,其带来的风雨可能对生命和财产造成严重威胁。然而,随着数字科技的飞速发展,可视化技术为防汛抗台工作带来了全新的…...

“中国软件杯”飞桨赛道晋级决赛现场名单公布
“中国软件杯”大学生软件设计大赛是由国家工业和信息化部、教育部、江苏省人民政府共同主办,是全国软件行业规格最高、最具影响力的国家级一类赛事,为《全国普通高校竞赛排行榜》榜单内赛事。今年,组委会联合百度飞桨共同设立了“智能系统设…...

JDBC处理批量数据提高效率
文章目录 0 说明1 如何使用jdbc操作数据库1.1 加载数据库驱动1.2 建立数据库连接1.3 创建Statement或者PreparedStatement用来执行SQL1.4 开始执行SQL语句1.5 处理结果集1.6 关闭连接1.7 完整代码 2 批量操作数据库3 如何打印SQL语句4 jdbc常用开源类库 1 JDBC实现往MySQL插入百…...

使用css和js给按钮添加微交互的几种方式
使用css和js给按钮添加微交互的几种方式 在现实世界中,当我们轻弹或按下某些东西时,它们会发出咔嗒声,例如电灯开关。有些东西会亮起或发出蜂鸣声,这些响应都是“微交互”,让我们知道我们何时成功完成了某件事。在本文…...
react面试之context的value变化时,内部所有子组件是否变化
上测试代码 // context const state {a: 1,b: 1, } const context createContext(state);export default context; // A组件 const A () > {const { a } useContext(context);return (<div>{a}</div>) } export default A;// B组件 const B () > {cons…...

linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...

Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...

《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...

(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

【无标题】湖北理元理律师事务所:债务优化中的生活保障与法律平衡之道
文/法律实务观察组 在债务重组领域,专业机构的核心价值不仅在于减轻债务数字,更在于帮助债务人在履行义务的同时维持基本生活尊严。湖北理元理律师事务所的服务实践表明,合法债务优化需同步实现三重平衡: 法律刚性(债…...
微服务通信安全:深入解析mTLS的原理与实践
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、引言:微服务时代的通信安全挑战 随着云原生和微服务架构的普及,服务间的通信安全成为系统设计的核心议题。传统的单体架构中&…...

李沐--动手学深度学习--GRU
1.GRU从零开始实现 #9.1.2GRU从零开始实现 import torch from torch import nn from d2l import torch as d2l#首先读取 8.5节中使用的时间机器数据集 batch_size,num_steps 32,35 train_iter,vocab d2l.load_data_time_machine(batch_size,num_steps) #初始化模型参数 def …...