Python求均值、方差、标准偏差SD、相对标准偏差RSD
均值
均值是统计学中最常用的统计量,用来表明资料中各观测值相对集中较多的中心位置。用于反映现象总体的一般水平,或分布的集中趋势。
import numpy as npa = [2, 4, 6, 8]print(np.mean(a)) # 均值
print(np.average(a, weights=[1, 2, 1, 1])) # 带权均值
方差
方差用来计算每一个变量(观察值)与总体均数之间的差异。为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。总体方差计算公式:
实际工作中,总体均数难以得到时,应用样本统计量代替总体参数,经校正后,样本方差计算公式:
import numpy as npa = [2, 4, 6, 8]print(np.var(a)) # 总体方差
print(np.var(a, ddof=1)) # 样本方差
标准差SD
标准偏差(Std Dev,Standard Deviation) ,一种度量数据分布的分散程度之标准,用以衡量数据值偏离算术平均值的程度。标准偏差越小,这些值偏离平均值就越少,反之亦然。
import numpy as npa = [2, 4, 6, 8]print(np.std(a)) # 总体标准差
print(np.std(a, ddof=1)) # 样本标准差
相对标准偏差RSD
相对标准偏差(relative standard deviation;RSD)又叫标准偏差系数、变异系数、变动系数等,由标准偏差除以相应的平均值乘100%所得值,可在检验检测工作中分析结果的精密度。
import numpy as npa = [2, 4, 6, 8]RSD = np.std(a, ddof=1)/np.mean(a)
print(RSD)
汇总
import numpy as npa = [2, 4, 6, 8]print(np.mean(a)) # 均值
print(np.average(a, weights=[1, 2, 1, 1])) # 带权均值print(np.var(a)) # 总体方差
print(np.var(a, ddof=1)) # 样本方差print(np.std(a)) # 总体标准差
print(np.std(a, ddof=1)) # 样本标准差RSD = np.std(a, ddof=1)/np.mean(a) # 相对标准偏差
print(RSD)
Numpy的数据离散程度度量
函数 | 功能 |
---|---|
np.mean(list_a) | 计算列表list_a的均值 |
np.average(list_a) | 计算列表list_a的均值 |
np.average(list_a, weights = [1, 2, 1, 1]) | 计算列表list_a的加权平均数 |
np.var(list_a) | 计算列表list_a的总体方差 |
np.var(list_a, ddof = 1) | 计算列表list_a的样本方差 |
np.std(list_a) | 计算列表list_a的总体标准差 |
np.std(list_a, ddof = 1) | 计算列表list_a的样本标准差 |
np.median(list_a) | 计算列表list_a的中位数 |
np.mode(list_a) | 计算列表list_a的众数 |
np.percentile(list_a, (25)) | 计算列表list_a的第1四分位数 |
np.percentile(list_a, (50)) | 计算列表list_a的第2四分位数 |
np.percentile(list_a, (75)) | 计算列表list_a的第3四分位数 |
np.percentile(list_a, (25)) - np.percentile(list_a, (75)) | 计算列表list_a的四分位差 |
np.max(list_a) - np.min(list_a)) | 计算列表list_a的极差 |
四分位数
四分位数(Quartile)也称四分位点,是指在统计学中把所有数值由小到大排列并分成四等份,处于三个分割点位置的数值。多应用于统计学中的箱线图绘制。它是一组数据排序后处于25%和75%位置上的值。四分位数是通过3个点将全部数据等分为4部分,其中每部分包含25%的数据。很显然,中间的四分位数就是中位数,因此通常所说的四分位数是指处在25%位置上的数值(称为下四分位数)和处在75%位置上的数值(称为上四分位数)。
极差
极差又称范围误差或全距(Range),以R表示,是用来表示统计资料中的变异量数(measures of variation),其最大值与最小值之间的差距,即最大值减最小值后所得之数据。
相关文章:

Python求均值、方差、标准偏差SD、相对标准偏差RSD
均值 均值是统计学中最常用的统计量,用来表明资料中各观测值相对集中较多的中心位置。用于反映现象总体的一般水平,或分布的集中趋势。 import numpy as npa [2, 4, 6, 8]print(np.mean(a)) # 均值 print(np.average(a, weights[1, 2, 1, 1])) # 带…...

SQL ASNI where from group order 顺序
SQL语句执行顺序: from–>where–>group by -->having — >select --> order 第一步:from语句,选择要操作的表。 第二步:where语句,在from后的表中设置筛选条件,筛选出符合条件的记录。 …...
springboot(39) : RestTemplate完全体
HTTP请求调用集成,支持GET,POST,JSON,Header调用,日志打印,请求耗时计算,设置中文编码 1.使用(注入RestTemplateService) Autowiredprivate RestTemplateService restTemplateService; 2.RestTemplate配置类 import org.springframework.context.annotation.Bean; import org.…...

python中计算2的32次方减1,python怎么算2的3次方
大家好,给大家分享一下怎么样用python编写2的n次方,n由键盘输入,很多人还不知道这一点。下面详细解释一下。现在让我们来看看! ---恢复内容开始--- 1、内置函数:取绝对值函数abs() 2、内置函数:取最大值max()ÿ…...
阿里云SLB负载均衡ALB、CLB和NLB有什么区别?
阿里云负载均衡SLB分为传统型负载均衡CLB(原SLB)、应用型负载均衡ALB和网络型负载均衡NLB,三者有什么区别?CLB是之前的传统的SLB,基于物理机架构的4层负载均衡;ALB是应用型负载均衡,7层负载均衡…...

SynergyNet(头部姿态估计 Head Pose Estimation)复现 demo测试
目录 0 相关资料1 环境搭建2 安装 SynergyNet3 下载相关文件4 编译5 测试 0 相关资料 SynergyNet(github):https://github.com/choyingw/SynergyNet 1 环境搭建 我用的AutoDL平台搭建 选择镜像 PyTorch 1.9.0 Python 3.8(ubuntu18.04) Cu…...

mysql高级(尚硅谷-夏磊)
目录 内容介绍 Linux下MySQL的安装与使用 Mysql逻辑架构 Mysql存储引擎 Sql预热 索引简介 内容介绍 1、Linux下MySQL的安装与使用 2、逻辑架构 3、sql预热 Linux下MySQL的安装与使用 1、docker安装docker run -d \-p 3309:3306 \-v /atguigu/mysql/mysql8/conf:/etc/my…...

C++实用技术(二)std::function和bind绑定器
目录 简介std::functionstd::function对象包装器std::function做回调函数 std::bind绑定器bind绑定普通函数bind绑定成员函数 简介 C11新增了std::function和std::bind。用于函数的包装以及参数的绑定。可以替代一些函数指针,回调函数的场景。 std::function std…...

vue框架 element导航菜单el-submenu 简单使用方法--以侧边栏举例
1、目标 实现动态增删菜单栏的效果,所以要在数据库中建表 2 、建表 2.1、表样式 2.2、表数据 3、实体类 import lombok.AllArgsConstructor; import lombok.Data; import lombok.NoArgsConstructor;import java.util.List;Data AllArgsConstructor NoArgsConstr…...

Nodejs 第八章(npm搭建私服)
构建npm私服 构建私服有什么收益吗? 可以离线使用,你可以将npm私服部署到内网集群,这样离线也可以访问私有的包。提高包的安全性,使用私有的npm仓库可以更好的管理你的包,避免在使用公共的npm包的时候出现漏洞。提高…...

React Native获取手机屏幕宽高(Dimensions)
import { Dimensions } from react-nativeconsole.log(Dimensions, Dimensions.get(window)) 参考链接: https://www.reactnative.cn/docs/next/dimensions#%E6%96%B9%E6%B3%95 https://chat.xutongbao.top/...

kubernetes基于helm部署gitlab
kubernetes基于helm部署gitlab 这篇博文介绍如何在 Kubernetes 中使用helm部署 GitLab。 先决条件 已运行的 Kubernetes 集群负载均衡器,为ingress-nginx控制器提供EXTERNAL-IP,本示例使用metallb默认存储类,为gitlab pods提供持久化存储&…...

jmeter 5.1彻底解决中文上传乱码
1.修改源码,然后重新打jar包,就是所有上传文件名重新获取文件名 参考链接:多种Jmeter中文乱码问题处理方法 - 51Testing软件测试网 2.修改Advanced,必须选java...

云运维工具
企业通常寻找具有成本效益的方法来优化创收,维护物理基础架构以托管服务器和应用程序以提供服务交付需要巨大的空间和前期资金,最重要的是,物理基础设施会产生额外的运营支出以进行定期维护,这对收入造成了沉重的损失。 云使企业…...

【RL】Wasserstein距离-GAN背后的直觉
一、说明 在本文中,我们将阅读有关Wasserstein GANs的信息。具体来说,我们将关注以下内容:i)什么是瓦瑟斯坦距离?,ii)为什么要使用它?iii) 我们如何使用它来训练 GAN&…...
sentinel引入CommonFilter类
最近在做一个springcloudAlibaba项目,做链路流控模式时需要将入口资源关闭聚合,做法如下: spring-cloud-alibaba v2.1.1.RELEASE及前,sentinel1.7.0及后: 1.pom 中引入: <dependency><groupId>…...
Phoenix创建local index失败
执行创建local index出现如下错误 0: jdbc:phoenix:hbase01:2181> create local index local_index_name on "test" ("user"."name","user"."address"); 23/07/28 17:28:56 WARN client.SyncCoprocessorRpcChannel: Cal…...

css3 hover border 流动效果
/* Hover 边线流动 */.hoverDrawLine {border: 0 !important;position: relative;border-radius: 5px;--border-color: #60daaa; } .hoverDrawLine::before, .hoverDrawLine::after {box-sizing: border-box;content: ;position: absolute;border: 2px solid transparent;borde…...

jdk安装
JDK的下载、安装和环境配置教程(2021年,win10)_「已注销」的博客-CSDN博客_jdk 以上文章如果没有成功在环境变量中part再添加一句 C:\Program Files (x86)\Java\jdk1.7.0_80\bin 安装目录下的bin目录 写完环境后重启 📎jdk-20_w…...
utf8mb4_general_ci 和utf8mb4_unicode_ci有什么异同,有什么优劣
utf8mb4_general_ci 和 utf8mb4_unicode_ci 都是 MySQL 数据库中的字符集和排序规则(collation)。它们主要用于指定字符数据的排序和比较规则,以确保在数据库中对字符串进行查询和比较时得到正确的结果。 异同点: 1. utf8mb4_gen…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...

Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...

3-11单元格区域边界定位(End属性)学习笔记
返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...

基于 TAPD 进行项目管理
起因 自己写了个小工具,仓库用的Github。之前在用markdown进行需求管理,现在随着功能的增加,感觉有点难以管理了,所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD,需要提供一个企业名新建一个项目&#…...

力扣热题100 k个一组反转链表题解
题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?
在工业自动化持续演进的今天,通信网络的角色正变得愈发关键。 2025年6月6日,为期三天的华南国际工业博览会在深圳国际会展中心(宝安)圆满落幕。作为国内工业通信领域的技术型企业,光路科技(Fiberroad&…...