当前位置: 首页 > news >正文

Agent:OpenAI的下一步,亚马逊云科技站在第5层

什么是Agent?在大模型语境下,可以理解成能自主理解、规划、执行复杂任务的系统。Agent也将成为新的起点,成为各行各业构建新一代AI应用必不可少的组成部分。

对此,初创公司Seednapse AI创始人提出构建AI应用的五层基石理论,受到业界关注。

  1. Models,也就是我们熟悉的调用大模型API。
  2. Prompt Templates,在提示词中引入变量以适应用户输入的提示模版。
  3. Chains,对模型的链式调用,以上一个输出为下一个输入的一部分。
  4. Agent,能自主执行链式调用,以及访问外部工具。
  5. Multi-Agent,多个Agent共享一部分记忆,自主分工相互协作。

创业先锋之外,连AI基础设施的巨头也已经开始在Agent上发力。

比如亚马逊云科技纽约峰会上宣布的Amazon Bedrock Agents新功能,便是这种趋势最有代表性的体现。

 

Amazon Bedrock Agents在全托管基础模型服务的基础上,又把开发、部署和管理多个Agent的能力打包集成在一起。如果按照前面的五层基石理论,这类服务相当于直接从第五层开始,大大降低开发门槛。正如亚马逊云科技在发布会上所形容:只用几次点击,搞定能执行任务的生成式AI应用。可以预见的是,降低了门槛的Agent应用也将在各行各业全面爆发。

Agent,AI应用新时代的起点

怎样才算一个Agent应用?OpenAI华人科学家翁丽莲给出直观的“配方”:Agent=大模型+记忆+主动规划+工具使用。

以亚马逊云科技平台为例,开发Agent应用首先要根据具体任务场景给Agent选择合适的基础模型。Amazon Bedrock上除了自家的Amazon Titan大模型,还集结了擅长安全可控的Anthropic、擅长检索汇总信息的Cohere、以及专攻文生图的stability.ai等各家模型。选好后,把要执行的任务指令直接用文字描述出来,让Agent明白要扮演的角色和要完成的目标。指令可以是包括一系列“问题-思考步骤-行动步骤-示例”的结构化提示词,在ReAct(协同推理和行动)技术支持下,基础模型可以通过推理和决策找出相应的解决方案。

接下来的重头戏便是Add Action Group(添加动作组)。Agent要完成的具体任务,以及能使用的工具如企业系统API、Lambda函数等都是在这里设置。官方演示中是一个保险索赔管理场景,Agent通过提取未结索赔的列表、确定每个索赔的未完成文书工作并向保单持有人发送提醒来管理保险索赔。所有动作组设置好后,创建Agent和部署都是几次点击就能完成。

部署完成后,在测试中就可以看到Agent理解用户请求、将任务分解为多个步骤(收集未结保险索赔、查找索赔ID、发送提醒)并执行相应的操作。Amazon Bedrock通过向导式交互界面,减少了配置基础模型所需的编码工作量。动作组提供调用API实现特定功能,以及使用自己的数据构建差异化应用程序,又让基础模型能够完成更复杂的实际业务任务。

在整个流程中,还可以配合亚马逊云科技平台上的各种安全服务。比如使用PrivateLin建立基础模型和本地网络之间的私有连接,所有流量都不会暴露给互联网。又通过提供完全托管的服务,让开发者不需要管理底层系统就能发挥基础模型的能力。最终缩短从基础模型到实际应用的周期,加速基础模型为业务创造的价值。

加速大模型应用,还应关注什么

有了Amazon Bedrock的Agent能力,我们得以快速将大模型投入实际业务,为企业实现降本增效或创新。但要真正利用生成式AI的全部价值、发挥全部潜力,并与其他竞争对手拉开潜力,私有数据才是其中根本。换言之,大模型应用落地的关键,是企业自己宝贵的行业数据。

如何集成这些丰富的资源到我们的Agent之中,保证我们的大模型应用在执行任务时能够高效访问到正确的信息——是当下每一个企业都要面对的问题。当然,这一切都必须以保证隐私为前提。

除了私有数据的集成和调用,在大模型应用落地的路上,最为底层的支撑,算力,也始终是一个百说不厌的话题。众所周知,当下的显卡资源异常稀缺,且价格不菲。无论是购买还是租用,这都成了全球各企业在探索生成式AI应用上的一大笔支出。如何让这一笔花销更为经济实惠?这也是每个企业的思虑所在。

值得关注的是,以亚马逊云科技为代表的领先供应商,正在针对生成式AI落地过程中的这些挑战和痛点提供系统性的解决方案,对上述问题一一破解。针对个性化数据问题,亚马逊云科技宣布为三款数据服务提供向量引擎,用来助力生成式AI应用与业务整合。在生成式AI爆发之后,向量数据库也实在火爆不已。因为相比传统的关系数据库,它能给予与模型上下文更相关的响应。

 

亚马逊云科技这一最新服务,就是将私有数据存储到具有向量引擎的数据库中,在进行生成式AI应用时,通过简单的API调用就能方便地查询企业内部的数据。

而根据当前数据存储位置、对数据库技术的熟悉程度、向量维度的扩展、Embeddings的数量和性能需求等不同需求,亚马逊云科技提供了3个选项来满足:

  1. Amazon Aurora PostgreSQL兼容版关系型数据库,支持pgvector开源向量相似性搜索插件;
  2. 分布式搜索和分析服务Amazon OpenSearch,带有k-NN(k最近邻)插件和适用于Amazon OpenSearch Serverless的向量引擎;
  3. 兼容PostgreSQL的Amazon RDS(Amazon Relational Database Service)关系型数据库,支持pgvector插件。

 

当然,最值得说道的是这次最新推出的Amazon OpenSearch Serverless服务,它最大的优点就是让企业只关心向量数据的存储和检索,而不用背上任何底层运维的负担。

解决完数据集成问题,在底层支撑上,亚马逊云科技这次也直接推出H100支持的全新Amazon EC2 P5实例,这一曾经对于大多数企业都相当难得的算力资源,现在也变得“唾手可得”了。

据了解,该实例包含8个英伟达H100 Tensor Core GPU,640GB高带宽GPU内存,同时提供第三代AMD EPYC处理器、2TB系统内存和30TB本地NVMe存储,以及3200Gbps的聚合网络带宽和GPUDirect RDMA支持,可实现更低延迟和高效的横向扩展性能。相比上一代基于GPU的实例,Amazon EC2 P5可以让训练时间最多可缩短6倍(从几天缩短到几小时),降低高达40%的训练成本。

再加上亚马逊云科技之前基于自研芯片发布的Amazon EC2 Inf2和Amazon EC2 Trn1n等性能也表现不错的实例,在算力需求这一问题上,可以说是有了非常多的按需选择空间。

除了以上这些基础支持,各种开箱即用的AI服务也不“缺席”。如针对开发环节的AI编程助手Amazon CodeWhisperer,现在它与Amazon Glue实现集成,将AI代码生成的场景又扩展到一个新人群:数据工程师,只需自然语言(比如“利用json文件中的内容创建一个Spark DataFrame”),这些开发人员即可搞定各种任务;再如针对商业智能(BI)的Amazon QuickSight,也能够让业务分析师们使用自然语言执行日常任务,在几秒钟内创建各种数据可视化图表;还有Amazon HealthScribe,可以用于医疗行业生成临床文档,节省医生时间。这些工具都是主打让企业专注于核心业务,提高生产效率。

从今年4月起,亚马逊云科技就结合自身定位并基于真实用户需求出发,正式宣布进军生成式AI市场,为一切想要利用生成式AI技术加速或创新业务的企业提供服务。在短短的4个月期间,亚马逊云科技已推出了各类底座资源,从基础模型到算力支撑,从私人数据存储到高效开发工具,应用尽有。

而这次在纽约峰会释出的最新动向,则是继续加码生成式AI应用开发所需的一切。从Amazon EC2 P5实例代表的算力层、到Amazon OpenSearch Serverless向量引擎、Amazon Bedrock Agents代表的工具层、再到Amazon QuickSight等代表的应用层,一项端到端的解决方案已然形成。

在这之中,亚马逊云科技不断降低生成式AI的门槛,无论是初创企业还是传统行业,无论是处于生成式AI进程的哪一层,都能在这里找到合适的工具,无需耗费太多精力在底层逻辑之上,便可快速投入实际业务。

如亚马逊云科技数据库、数据分析和机器学习全球副总裁Swami Sivasubramanian所说:我相信生成式AI将改变每一个应用程序、行业和企业。在各行各业都全力奔赴的这场全新技术变革之下,亚马逊云科技的这一系列服务,无疑为普通玩家赢得了宝贵的时间和机会。

相关文章:

Agent:OpenAI的下一步,亚马逊云科技站在第5层

什么是Agent?在大模型语境下,可以理解成能自主理解、规划、执行复杂任务的系统。Agent也将成为新的起点,成为各行各业构建新一代AI应用必不可少的组成部分。 对此,初创公司Seednapse AI创始人提出构建AI应用的五层基石理论&#…...

JMeter 4.x 简单使用

文章目录 前言JMeter 4.x 简单使用1. 启动2. 设置成中文3. 接口测试3.1. 设置线程组3.2. HTTP信息请求头管理器3.3. 添加HTTP请求默认值3.4. 添加HTTP cookie 管理3.5. 添加http请求3.5.1. 添加断言 3.6. 添加监听器-查看结果树3.7. 添加监听器-聚合报告 4. 测试 前言 如果您觉…...

深入NLTK:Python自然语言处理库高级教程

在前面的初级和中级教程中,我们了解了NLTK库中的基本和进阶功能,如词干提取、词形还原、n-gram模型和词云的绘制等。在本篇高级教程中,我们将深入探索NLTK的更多高级功能,包括句法解析、命名实体识别、情感分析以及文本分类。 一…...

React 用来解析html 标签的方法

在React中,解析HTML标签通常是使用JSX(JavaScript XML)语法的一部分。JSX允许您在JavaScript代码中编写类似HTML的标记,然后通过React进行解析和渲染。 以下是React中解析HTML标签的几种常见方式: 直接在JSX中使用标…...

【C++】做一个飞机空战小游戏(五)——getch()控制两个飞机图标移动(控制光标位置)

[导读]本系列博文内容链接如下: 【C】做一个飞机空战小游戏(一)——使用getch()函数获得键盘码值 【C】做一个飞机空战小游戏(二)——利用getch()函数实现键盘控制单个字符移动【C】做一个飞机空战小游戏(三)——getch()函数控制任意造型飞机图标移动 【C】做一个飞…...

Flask 是什么?Flask框架详解及实践指南

Flask 是一个轻量级的 Python Web 框架,它被广泛用于构建 Web 应用程序和 API。Flask 简单易用,具有灵活性和可扩展性,是许多开发者喜欢用其构建项目的原因。本文将介绍 Flask 是什么以及如何使用它来构建 Web 应用程序,同时提供一…...

C. Mark and His Unfinished Essay - 思维

分析: 直接模拟操作会mle,可以每次复制记录对应源字符串的下标,可以记录每次字符串增加的长度的左右端点下标,可以发现左端点与读入的l是对应的,因此就可以向前移到l的位置,这样层层递归,就能找…...

Java的变量与常量

目录 变量 声明变量 变量的声明类型 变量的声明方式:变量名 变量名的标识符 初始化变量 常量 关键字final 类常量 总结 变量和常量都是用来存储值和数据的基本数据类型存储方式,但二者之间有一些关键差别。 变量 在Java中,每个变…...

C# Blazor 学习笔记(6):热重置问题解决

文章目录 前言热重置问题描述解决方法演示 总结 前言 我最近在使用Blazor的时候,使用了BootstrapBlazor(以下简称BB)创建模板的时候,发现热重置无效。经过了一上午的折腾,我终于解决了这个问题。 热重置 问题描述 …...

一百四十六、Xmanager——Xmanager5连接Xshell7并控制服务器桌面

一、目的 由于kettle安装在Linux上,Xshell启动后需要Xmanager。而Xmanager7版本受限、没有免费版,所以就用Xmanager5去连接Xshell7 二、Xmanager5安装包来源 (一)注册码 注册码:101210-450789-147200 &#xff08…...

用Rust实现23种设计模式之 模板方法模式

关注我,学习Rust不迷路!! 模板方法模式是一种行为型设计模式,它定义了一个算法的骨架,将一些步骤的实现延迟到子类中。以下是模板方法模式的优点和使用场景: 优点: 提高代码复用性&#xff1…...

python与深度学习(十三):CNN和IKUN模型

目录 1. 说明2. IKUN模型2.1 导入相关库2.2 建立模型2.3 模型编译2.4 数据生成器2.5 模型训练2.6 模型保存2.7 模型训练结果的可视化 3. IKUN的CNN模型可视化结果图4. 完整代码 1. 说明 本篇文章是CNN的另外一个例子,IKUN模型,是自制数据集的例子。之前…...

题目:2283.判断一个数的数字计数是否等于数位的值

​​题目来源: leetcode题目,网址:2283. 判断一个数的数字计数是否等于数位的值 - 力扣(LeetCode) 解题思路: 两次遍历。第一次对字符串中每个出现的数字计数。第二次比较数字计数与数位的值是否相等。 解…...

任务14、无缝衔接,MidJourney瓷砖(Tile)参数制作精良贴图

14.1 任务概述 在这个实验任务中,我们将深入探索《Midjourney Ai绘画》中的Tile技术和其在艺术创作中的具有挑战性的应用。此任务将通过理论学习与实践操作相结合的方式,让参与者更好地理解Tile的核心概念,熟练掌握如何在Midjourney平台上使用Tile参数,并实际运用到AI绘画…...

【uniapp APP如何优化】

以下是一些可以进行优化的建议: 1. 减少网络请求次数:尽量避免在首页加载时请求大量数据,可以考虑使用分页加载,或者使用下拉刷新和上拉加载更多的方式。 2. 减小图片大小:使用压缩图片的工具,可以尽可能…...

uni-app——下拉框多选

一、组件components/my-selectCheckbox.vue <template><view class"uni-stat__select"><span v-if"label" class"uni-label-text">{{label &#xff1a;}}</span><view class"uni-stat-box" :class"…...

从excel中提取嵌入式图片的解决方法

1 发现问题 我的excel中有浮动图片和嵌入式图片&#xff0c;但是openpyxl的_image对象只提取到了浮动图片&#xff0c;通过阅读其源码发现&#xff0c;这是因为openpyxl只解析了drawing文件导致的&#xff0c;所以确定需要自己解析 2 解决思路 1、解析出media资源 2、解析…...

python socket 网络编程的基本功

python socket逻辑思维整理 UDP发送步骤&#xff1a; 1 、先建立udp套接字 udp_socket socket.socket(socket.AF_INET, socket.SOCK_DGRAM) 2、利用sendto把数据并指定对端IP和端口&#xff0c;本端端口可以不用指定用自动随机的 udp_socket.sendto(“发送的内容”.encode(“…...

【element-ui】form表单初始化页面如何取消自动校验rules

问题描述&#xff1a;elementUI表单提交页面&#xff0c;初始化页面是获取接口数据&#xff0c;给form赋值&#xff0c;但是有时候这些会是空值情况&#xff0c;如果是空值&#xff0c;再给form表单赋值的话&#xff0c;页面初始化时候进行rules校验会不通过&#xff0c;此时前…...

git 公钥密钥 生成与查看

1.什么是公钥 很多服务器都是需要认证的&#xff0c;ssh认证是其中的一种。在客户端生成公钥&#xff0c;把生成的公钥添加到服务器&#xff0c;你以后连接服务器就不用每次都输入用户名和密码了。 很多git服务器都是用ssh认证方式&#xff0c;你需要把你生成的公钥发送给代码仓…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)

CSI-2 协议详细解析 (一&#xff09; 1. CSI-2层定义&#xff08;CSI-2 Layer Definitions&#xff09; 分层结构 &#xff1a;CSI-2协议分为6层&#xff1a; 物理层&#xff08;PHY Layer&#xff09; &#xff1a; 定义电气特性、时钟机制和传输介质&#xff08;导线&#…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...

作为测试我们应该关注redis哪些方面

1、功能测试 数据结构操作&#xff1a;验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化&#xff1a;测试aof和aof持久化机制&#xff0c;确保数据在开启后正确恢复。 事务&#xff1a;检查事务的原子性和回滚机制。 发布订阅&#xff1a;确保消息正确传递。 2、性…...

uniapp 集成腾讯云 IM 富媒体消息(地理位置/文件)

UniApp 集成腾讯云 IM 富媒体消息全攻略&#xff08;地理位置/文件&#xff09; 一、功能实现原理 腾讯云 IM 通过 消息扩展机制 支持富媒体类型&#xff0c;核心实现方式&#xff1a; 标准消息类型&#xff1a;直接使用 SDK 内置类型&#xff08;文件、图片等&#xff09;自…...

Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践

在 Kubernetes 集群中&#xff0c;如何在保障应用高可用的同时有效地管理资源&#xff0c;一直是运维人员和开发者关注的重点。随着微服务架构的普及&#xff0c;集群内各个服务的负载波动日趋明显&#xff0c;传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...

WEB3全栈开发——面试专业技能点P7前端与链上集成

一、Next.js技术栈 ✅ 概念介绍 Next.js 是一个基于 React 的 服务端渲染&#xff08;SSR&#xff09;与静态网站生成&#xff08;SSG&#xff09; 框架&#xff0c;由 Vercel 开发。它简化了构建生产级 React 应用的过程&#xff0c;并内置了很多特性&#xff1a; ✅ 文件系…...

【免费数据】2005-2019年我国272个地级市的旅游竞争力多指标数据(33个指标)

旅游业是一个城市的重要产业构成。旅游竞争力是一个城市竞争力的重要构成部分。一个城市的旅游竞争力反映了其在旅游市场竞争中的比较优势。 今日我们分享的是2005-2019年我国272个地级市的旅游竞争力多指标数据&#xff01;该数据集源自2025年4月发表于《地理学报》的论文成果…...

【PX4飞控】mavros gps相关话题分析,经纬度海拔获取方法,卫星数锁定状态获取方法

使用 ROS1-Noetic 和 mavros v1.20.1&#xff0c; 携带经纬度海拔的话题主要有三个&#xff1a; /mavros/global_position/raw/fix/mavros/gpsstatus/gps1/raw/mavros/global_position/global 查看 mavros 源码&#xff0c;来分析他们的发布过程。发现前两个话题都对应了同一…...

工厂方法模式和抽象工厂方法模式的battle

1.案例直接上手 在这个案例里面&#xff0c;我们会实现这个普通的工厂方法&#xff0c;并且对比这个普通工厂方法和我们直接创建对象的差别在哪里&#xff0c;为什么需要一个工厂&#xff1a; 下面的这个是我们的这个案例里面涉及到的接口和对应的实现类&#xff1a; 两个发…...