当前位置: 首页 > news >正文

【Paper Reading】CenterNet:Keypoint Triplets for Object Detection

背景

首先是借鉴Corner Net 表述了一下基于Anchor方法的不足:

  1. anchor的大小/比例需要人工来确认
  2. anchor并没有完全和gt的bbox对齐,不利于分类任务。

但是CornerNet也有自己的缺点

  1. CornerNet 只预测了top-left和bottom-right 两个点,并没有关注整体的信息,因此缺少一些全局的信息
  2. 上述的点导致它对边界过于敏感,经常会预测一些错误的bbox。

为了解决该问题,作者提出了Triplet的关键点预测。他follow了top-left和bottom-right的预测,此外增加了中心点的预测。
具体来说,为了使得中心点的预测更加准确,作者提出了Center Pooling的层用来在水平和垂直两个维度进行特征的聚合。使得每个位置的点都可以尽可能的感知到全局的信息。
此外,作者还提出了cascade corner pooling layer来取代原有的corner pooling layer。

作者也从指标的角度量化了上面提到的CornerNet比较容易出现False Positive的情况,如下图所示。作者展示了在不同IoU阈值下 False Discovery Rate。注意这里为什么没有用mAP,mAP是否有缺点?

  1. 框的增加,在recall不变的情况下,precision的下降不会导致mAP的下降。=>因此需要关注PR曲线的分数
  2. mAP是分类别计算的,每个类别都是按照分数排序来计算的,说明每个类别的分数阈值可能会不同,不能用同一个阈值在适应不同的类别。
    False Detection

方法

CenterNet的网络结构如下图所示
CenterNet Architecture
整个网络的推理流程如下所示:

  1. 选择top-k个中心点根据他们的分数
  2. 根据对应的offset将其还原到对应的输入图像中
  3. 根据tl-br构成的bbox,判断每个bbox内部的中心区域是否包括上述的中心点。
    3.1 N个tl的点和N个br 的点,组合形成N*N个bbox
    3.2 如果tl和br的embedding相似度小于阈值,则将对应的bbox剔除,否则保留。
  4. 如果中心点在bbox中,则用三者分数(tl、br和center)的平均来表示bbox的置信度。

那么这里涉及到一个问题,那就是如何计算每个bbox的中心区域。作者这里认为大的bbox应该使用小的中心区域,避免precision过低。小的bbox应该使用大的中心区域,避免recall过低。因此这里作者提出了scale-aware的中心区域计算方法,详情如下所示,其中针对大物体,n选择5,针对小物体,n选择3。
central region
在这里插入图片描述
上述介绍了推理的整体流程,那么我们在从内部逐步解析一下关键的结构,我们分别从center pooling、cascade corner pooling和loss来进行介绍。

center pooling

center pooling的示意图如下图所示。具体来说就是针对每个位置,我们计算其水平和垂直方向的max response,然后想加得到该位置的表征,我们认为这样的表征是包括了全局信息。简化版本的计算如下所示,其中 f , f 3 ∈ R H × W × C f,f_3 \in R^{H \times W \times C} f,f3RH×W×C

f1 = np.max(f, axis=0)
f2 = np.max(f, axis=1)
f3 = f1[None, :, :] + f2[:, None, :]

center pooling

cascaded corner pooling

示意图如下所示
在这里插入图片描述

loss

损失函数的定义如下所示。整体上分为三大部分。

  • L d e t c o 、 L d e t c e L_{det}^{co}、L_{det}^{ce} LdetcoLdetce表示的corner 和 center两个heatmap组成的loss,这里采用的是focal loss。

  • L p u l l c o 、 L p u s h c o L_{pull}^{co}、L_{push}^{co} LpullcoLpushco是让属于同一个物体的corner embedding尽可能相似,属于不同物体的embedding尽可能远离。

  • L o f f c o 、 L o f f c e L_{off}^{co}、L_{off}^{ce} LoffcoLoffce 表示预测corner 和 center在原图上的offset,这里采用的是l1-loss。
    loss function

  • QA1:GT是如何计算的?

相关文章:

【Paper Reading】CenterNet:Keypoint Triplets for Object Detection

背景 首先是借鉴Corner Net 表述了一下基于Anchor方法的不足: anchor的大小/比例需要人工来确认anchor并没有完全和gt的bbox对齐,不利于分类任务。 但是CornerNet也有自己的缺点 CornerNet 只预测了top-left和bottom-right 两个点,并没有…...

【BASH】回顾与知识点梳理(三)

【BASH】回顾与知识点梳理 三 三. 命令别名与历史命令3.1 命令别名设定: alias, unalias3.2 历史命令:history同一账号同时多次登入的 history 写入问题无法记录时间 该系列目录 --> 【BASH】回顾与知识点梳理(目录) 三. 命令…...

C#设计模式之---单例模式

单例模式(Singleton) 单例模式,属于创建类型的一种常用的软件设计模式。通过单例模式的方法创建的类在当前进程中只有一个实例。 1)普通单例模式 using System; namespace SingletonPattern {/// /// 单例模式(非线程安全)/// …...

Git工具安装

Git 工具安装 1. 下载Git安装包2. 安装Git工具3. 简单的使用配置用户名 1. 下载Git安装包 打开官网 https://git-scm.com/downloads点击下载 2. 安装Git工具 右击以管理员身份运行 ![在这里插入图片描述](https://img-blog.csdnimg.cn/9a99a73d54824800bc87db64f71f7602.png…...

深度学习——注意力机制、自注意力机制

什么是注意力机制? 1.注意力机制的概念: 我们在听到一句话的时候,会不自觉的捕获关键信息,这种能力叫做注意力。 比如:“我吃了100个包子” 有的人会注意“我”,有的人会注意“100个”。 那么对于机器来说…...

STM32入门学习之定时器中断

1.STM32的通用定时器是可编程预分频驱动的16位自动装载计数器。 STM32 的通用定时器可以被用于:测量输入信号的脉冲长度 ( 输入捕获 ) 或者产生输出波 形 ( 输出比较和 PWM) 等。 使用定时器预分频器和 RCC 时钟控制器预分频器,脉冲长度和波形 周…...

基本数据类型与包装数据类型的使用标准

Reference:《阿里巴巴Java开发手册》 【强制】所有的 POJO 类属性必须使用包装数据类型。【强制】RPC 方法的返回值和参数必须使用包装数据类型。【推荐】所有的局部变量使用基本数据类型。 比如我们如果自定义了一个Student类,其中有一个属性是成绩score,如果用Integer而不用…...

小研究 - 基于 SpringBoot 微服务架构下前后端分离的 MVVM 模型(二)

本文主要以SpringBoot微服务架构为基础,提出了前后端分离的MVVM模型,并对其进行了详细的分析以及研究,以此为相关领域的工作人员提供一定的技术性参考。 目录 4 SpringBoot 4.1 技术发展 4.2 技术特征 4.3 SpringBoot项目构建 4.4 目录结…...

ArmSoM-W3之RK3588安装Qt+opencv+采集摄像头画面

1. 简介 场景:在RK3588上做qt开发工作 RK3588安装Qtopencv采集摄像头画面 2. 环境介绍 这里使用了OpenCV所带的库函数捕获摄像头的视频图像。 硬件环境: ArmSoM-RK3588开发板、(MIPI-DSI)摄像头 软件版本: OS&…...

基于长短期神经网络的风速预测,基于LSTM的风速预测

目录 背影 摘要 LSTM的基本定义 LSTM实现的步骤 基于长短期神经网络LSTM的风速预测 完整代码: https://download.csdn.net/download/abc991835105/88171311 效果图 结果分析 展望 参考论文 背影 风速预测是一种比较难的预测,随机性比较大,长短期神经网络是一种改进党的RNN…...

Mybatis引出的一系列问题-spring多数据源配置

在日常开发中我们都是以单个数据库进行开发,在小型项目中是完全能够满足需求的。但是,当我们牵扯到像淘宝、京东这样的大型项目的时候,单个数据库就难以承受用户的CRUD操作。那么此时,我们就需要使用多个数据源进行读写分离的操作…...

Vue-组件二次封装

本次对el-input进行简单封装进行演示 封装很简单,就给激活样式的边框(主要是功能) 本次封装主要使用到vue自带的几个对象 $attrs:获取绑定在组件上的所有属性$listeners: 获取绑定在组件上的所有函数方法$slots: 获取应用在组件内的所有插槽 …...

[C++]02.选择结构与循环结构

02.选择结构与循环结构 一.程序流程结构1.选择结构1.1.if语句1.2.三目运算符1.3.switch语句 2.循环结构2.1.while语句2.2.do-while语句2.3.for语句2.4.break语句2.5.continue语句2.6.goto语句 一.程序流程结构 C/C支持的最基本的运行结构: 顺序结构, 选择结构, 循环结构顺序结…...

C语言案例 按序输出多个整数-03

难度2复杂度3 题目:输入多个整数,按从小到大的顺序输出 步骤一:定义程序的目标 编写一个C程序,随机输入整数,按照从小到大的顺序输出 步骤二:程序设计 整个C程序由三大模块组成,第一个模块使…...

如何获取vivado IP列表

TCL命令如下: set fid [open "vivado_included_ip_[version -short].csv" w] puts $fid "Name;Version" set ip_catalog [get_ipdefs *] foreach ip $ip_catalog{ set ipname [get_property DISPLAY_NAME [get_ipdefs $ip]]set iplib [get_p…...

计算机网络的定义和分类

计算机网络的定义和分类 计算机网络的定义 计算机网络的精确定义并未统一计算机网络最简单的定义是:一些互相连接的、自治的计算机的集合 互连:指计算机之间可以通过有线或无线的方式进行数据通信自治:是指独立的计算机,它有自己的硬件和软件&#xff…...

【css】超过文本显示省略号

显示省略号的前提:必须有指定宽度 一、单行文本超出部分显示省略号 属性取值解释overflowhidden当内容超过盒子宽度, 隐藏溢出部分white-spacenowrap让文字在一行内显示, 不换行text-overflowellipsis如果溢出的内容是文字, 就用省略号代替 .one-line{overflow:h…...

Java 8 中使用 Stream 遍历树形结构

在实际开发中,我们经常会开发菜单,树形结构,数据库一般就使用父id来表示,为了降低数据库的查询压力,我们可以使用Java8中的Stream流一次性把数据查出来,然后通过流式处理,我们一起来看看&#x…...

网络安全防火墙体验实验

网络拓扑 实验操作: 1、cloud配置 2、防火墙配置 [USG6000V1]int GigabitEthernet 0/0/0 [USG6000V1-GigabitEthernet0/0/0]ip add 192.168.200.100 24 打开防火墙的所有服务 [USG6000V1-GigabitEthernet0/0/0]service-manage all permit 3、进入图形化界面配置…...

YOLOv5引入FasterNet主干网络,目标检测速度提升明显

目录 一、背景介绍1.1 目标检测算法简介1.2 YOLOv5简介及发展历程 二、主干网络选择的重要性2.1 主干网络在目标检测中的作用2.2 YOLOv5使用的默认主干网络 三、FasterNet简介与原理解析3.1 FasterNet概述3.2 FasterNet的网络结构3.2.1 基础网络模块3.2.2 快速特征融合模块3.2.…...

网络编程(Modbus进阶)

思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

【Oracle APEX开发小技巧12】

有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

ElasticSearch搜索引擎之倒排索引及其底层算法

文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心,JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例: 1. onclick - 点击事件 当元素被单击时触发(左键点击) button.onclick function() {alert("按钮被点击了!&…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...

C# 表达式和运算符(求值顺序)

求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如,已知表达式3*52,依照子表达式的求值顺序,有两种可能的结果,如图9-3所示。 如果乘法先执行,结果是17。如果5…...