【Paper Reading】CenterNet:Keypoint Triplets for Object Detection
背景
首先是借鉴Corner Net 表述了一下基于Anchor方法的不足:
- anchor的大小/比例需要人工来确认
- anchor并没有完全和gt的bbox对齐,不利于分类任务。
但是CornerNet也有自己的缺点
- CornerNet 只预测了top-left和bottom-right 两个点,并没有关注整体的信息,因此缺少一些全局的信息
- 上述的点导致它对边界过于敏感,经常会预测一些错误的bbox。
为了解决该问题,作者提出了Triplet的关键点预测。他follow了top-left和bottom-right的预测,此外增加了中心点的预测。
具体来说,为了使得中心点的预测更加准确,作者提出了Center Pooling的层用来在水平和垂直两个维度进行特征的聚合。使得每个位置的点都可以尽可能的感知到全局的信息。
此外,作者还提出了cascade corner pooling layer来取代原有的corner pooling layer。
作者也从指标的角度量化了上面提到的CornerNet比较容易出现False Positive的情况,如下图所示。作者展示了在不同IoU阈值下 False Discovery Rate。注意这里为什么没有用mAP,mAP是否有缺点?
- 框的增加,在recall不变的情况下,precision的下降不会导致mAP的下降。=>因此需要关注PR曲线的分数
- mAP是分类别计算的,每个类别都是按照分数排序来计算的,说明每个类别的分数阈值可能会不同,不能用同一个阈值在适应不同的类别。
方法
CenterNet的网络结构如下图所示
整个网络的推理流程如下所示:
- 选择top-k个中心点根据他们的分数
- 根据对应的offset将其还原到对应的输入图像中
- 根据tl-br构成的bbox,判断每个bbox内部的中心区域是否包括上述的中心点。
3.1 N个tl的点和N个br 的点,组合形成N*N个bbox
3.2 如果tl和br的embedding相似度小于阈值,则将对应的bbox剔除,否则保留。 - 如果中心点在bbox中,则用三者分数(tl、br和center)的平均来表示bbox的置信度。
那么这里涉及到一个问题,那就是如何计算每个bbox的中心区域。作者这里认为大的bbox应该使用小的中心区域,避免precision过低。小的bbox应该使用大的中心区域,避免recall过低。因此这里作者提出了scale-aware的中心区域计算方法,详情如下所示,其中针对大物体,n选择5,针对小物体,n选择3。
上述介绍了推理的整体流程,那么我们在从内部逐步解析一下关键的结构,我们分别从center pooling、cascade corner pooling和loss来进行介绍。
center pooling
center pooling的示意图如下图所示。具体来说就是针对每个位置,我们计算其水平和垂直方向的max response,然后想加得到该位置的表征,我们认为这样的表征是包括了全局信息。简化版本的计算如下所示,其中 f , f 3 ∈ R H × W × C f,f_3 \in R^{H \times W \times C} f,f3∈RH×W×C
f1 = np.max(f, axis=0)
f2 = np.max(f, axis=1)
f3 = f1[None, :, :] + f2[:, None, :]
cascaded corner pooling
示意图如下所示
loss
损失函数的定义如下所示。整体上分为三大部分。
-
L d e t c o 、 L d e t c e L_{det}^{co}、L_{det}^{ce} Ldetco、Ldetce表示的corner 和 center两个heatmap组成的loss,这里采用的是focal loss。
-
L p u l l c o 、 L p u s h c o L_{pull}^{co}、L_{push}^{co} Lpullco、Lpushco是让属于同一个物体的corner embedding尽可能相似,属于不同物体的embedding尽可能远离。
-
L o f f c o 、 L o f f c e L_{off}^{co}、L_{off}^{ce} Loffco、Loffce 表示预测corner 和 center在原图上的offset,这里采用的是l1-loss。
-
QA1:GT是如何计算的?
相关文章:

【Paper Reading】CenterNet:Keypoint Triplets for Object Detection
背景 首先是借鉴Corner Net 表述了一下基于Anchor方法的不足: anchor的大小/比例需要人工来确认anchor并没有完全和gt的bbox对齐,不利于分类任务。 但是CornerNet也有自己的缺点 CornerNet 只预测了top-left和bottom-right 两个点,并没有…...
【BASH】回顾与知识点梳理(三)
【BASH】回顾与知识点梳理 三 三. 命令别名与历史命令3.1 命令别名设定: alias, unalias3.2 历史命令:history同一账号同时多次登入的 history 写入问题无法记录时间 该系列目录 --> 【BASH】回顾与知识点梳理(目录) 三. 命令…...
C#设计模式之---单例模式
单例模式(Singleton) 单例模式,属于创建类型的一种常用的软件设计模式。通过单例模式的方法创建的类在当前进程中只有一个实例。 1)普通单例模式 using System; namespace SingletonPattern {/// /// 单例模式(非线程安全)/// …...

Git工具安装
Git 工具安装 1. 下载Git安装包2. 安装Git工具3. 简单的使用配置用户名 1. 下载Git安装包 打开官网 https://git-scm.com/downloads点击下载 2. 安装Git工具 右击以管理员身份运行 
深度学习——注意力机制、自注意力机制
什么是注意力机制? 1.注意力机制的概念: 我们在听到一句话的时候,会不自觉的捕获关键信息,这种能力叫做注意力。 比如:“我吃了100个包子” 有的人会注意“我”,有的人会注意“100个”。 那么对于机器来说…...

STM32入门学习之定时器中断
1.STM32的通用定时器是可编程预分频驱动的16位自动装载计数器。 STM32 的通用定时器可以被用于:测量输入信号的脉冲长度 ( 输入捕获 ) 或者产生输出波 形 ( 输出比较和 PWM) 等。 使用定时器预分频器和 RCC 时钟控制器预分频器,脉冲长度和波形 周…...
基本数据类型与包装数据类型的使用标准
Reference:《阿里巴巴Java开发手册》 【强制】所有的 POJO 类属性必须使用包装数据类型。【强制】RPC 方法的返回值和参数必须使用包装数据类型。【推荐】所有的局部变量使用基本数据类型。 比如我们如果自定义了一个Student类,其中有一个属性是成绩score,如果用Integer而不用…...
小研究 - 基于 SpringBoot 微服务架构下前后端分离的 MVVM 模型(二)
本文主要以SpringBoot微服务架构为基础,提出了前后端分离的MVVM模型,并对其进行了详细的分析以及研究,以此为相关领域的工作人员提供一定的技术性参考。 目录 4 SpringBoot 4.1 技术发展 4.2 技术特征 4.3 SpringBoot项目构建 4.4 目录结…...

ArmSoM-W3之RK3588安装Qt+opencv+采集摄像头画面
1. 简介 场景:在RK3588上做qt开发工作 RK3588安装Qtopencv采集摄像头画面 2. 环境介绍 这里使用了OpenCV所带的库函数捕获摄像头的视频图像。 硬件环境: ArmSoM-RK3588开发板、(MIPI-DSI)摄像头 软件版本: OS&…...
基于长短期神经网络的风速预测,基于LSTM的风速预测
目录 背影 摘要 LSTM的基本定义 LSTM实现的步骤 基于长短期神经网络LSTM的风速预测 完整代码: https://download.csdn.net/download/abc991835105/88171311 效果图 结果分析 展望 参考论文 背影 风速预测是一种比较难的预测,随机性比较大,长短期神经网络是一种改进党的RNN…...

Mybatis引出的一系列问题-spring多数据源配置
在日常开发中我们都是以单个数据库进行开发,在小型项目中是完全能够满足需求的。但是,当我们牵扯到像淘宝、京东这样的大型项目的时候,单个数据库就难以承受用户的CRUD操作。那么此时,我们就需要使用多个数据源进行读写分离的操作…...

Vue-组件二次封装
本次对el-input进行简单封装进行演示 封装很简单,就给激活样式的边框(主要是功能) 本次封装主要使用到vue自带的几个对象 $attrs:获取绑定在组件上的所有属性$listeners: 获取绑定在组件上的所有函数方法$slots: 获取应用在组件内的所有插槽 …...
[C++]02.选择结构与循环结构
02.选择结构与循环结构 一.程序流程结构1.选择结构1.1.if语句1.2.三目运算符1.3.switch语句 2.循环结构2.1.while语句2.2.do-while语句2.3.for语句2.4.break语句2.5.continue语句2.6.goto语句 一.程序流程结构 C/C支持的最基本的运行结构: 顺序结构, 选择结构, 循环结构顺序结…...

C语言案例 按序输出多个整数-03
难度2复杂度3 题目:输入多个整数,按从小到大的顺序输出 步骤一:定义程序的目标 编写一个C程序,随机输入整数,按照从小到大的顺序输出 步骤二:程序设计 整个C程序由三大模块组成,第一个模块使…...
如何获取vivado IP列表
TCL命令如下: set fid [open "vivado_included_ip_[version -short].csv" w] puts $fid "Name;Version" set ip_catalog [get_ipdefs *] foreach ip $ip_catalog{ set ipname [get_property DISPLAY_NAME [get_ipdefs $ip]]set iplib [get_p…...

计算机网络的定义和分类
计算机网络的定义和分类 计算机网络的定义 计算机网络的精确定义并未统一计算机网络最简单的定义是:一些互相连接的、自治的计算机的集合 互连:指计算机之间可以通过有线或无线的方式进行数据通信自治:是指独立的计算机,它有自己的硬件和软件ÿ…...
【css】超过文本显示省略号
显示省略号的前提:必须有指定宽度 一、单行文本超出部分显示省略号 属性取值解释overflowhidden当内容超过盒子宽度, 隐藏溢出部分white-spacenowrap让文字在一行内显示, 不换行text-overflowellipsis如果溢出的内容是文字, 就用省略号代替 .one-line{overflow:h…...

Java 8 中使用 Stream 遍历树形结构
在实际开发中,我们经常会开发菜单,树形结构,数据库一般就使用父id来表示,为了降低数据库的查询压力,我们可以使用Java8中的Stream流一次性把数据查出来,然后通过流式处理,我们一起来看看&#x…...

网络安全防火墙体验实验
网络拓扑 实验操作: 1、cloud配置 2、防火墙配置 [USG6000V1]int GigabitEthernet 0/0/0 [USG6000V1-GigabitEthernet0/0/0]ip add 192.168.200.100 24 打开防火墙的所有服务 [USG6000V1-GigabitEthernet0/0/0]service-manage all permit 3、进入图形化界面配置…...

YOLOv5引入FasterNet主干网络,目标检测速度提升明显
目录 一、背景介绍1.1 目标检测算法简介1.2 YOLOv5简介及发展历程 二、主干网络选择的重要性2.1 主干网络在目标检测中的作用2.2 YOLOv5使用的默认主干网络 三、FasterNet简介与原理解析3.1 FasterNet概述3.2 FasterNet的网络结构3.2.1 基础网络模块3.2.2 快速特征融合模块3.2.…...

【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版
7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

【Linux】Linux 系统默认的目录及作用说明
博主介绍:✌全网粉丝23W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...

STM32HAL库USART源代码解析及应用
STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...
Caliper 负载(Workload)详细解析
Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分: 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...

【C++】纯虚函数类外可以写实现吗?
1. 答案 先说答案,可以。 2.代码测试 .h头文件 #include <iostream> #include <string>// 抽象基类 class AbstractBase { public:AbstractBase() default;virtual ~AbstractBase() default; // 默认析构函数public:virtual int PureVirtualFunct…...