P1993 小 K 的农场
小 K 的农场
题目描述
小 K 在 MC 里面建立很多很多的农场,总共 n n n 个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共 m m m 个),以下列三种形式描述:
- 农场 a a a 比农场 b b b 至少多种植了 c c c 个单位的作物;
- 农场 a a a 比农场 b b b 至多多种植了 c c c 个单位的作物;
- 农场 a a a 与农场 b b b 种植的作物数一样多。
但是,由于小 K 的记忆有些偏差,所以他想要知道存不存在一种情况,使得农场的种植作物数量与他记忆中的所有信息吻合。
输入格式
第一行包括两个整数 n n n 和 m m m,分别表示农场数目和小 K 记忆中的信息数目。
接下来 m m m 行:
- 如果每行的第一个数是 1 1 1,接下来有三个整数 a , b , c a,b,c a,b,c,表示农场 a a a 比农场 b b b 至少多种植了 c c c 个单位的作物;
- 如果每行的第一个数是 2 2 2,接下来有三个整数 a , b , c a,b,c a,b,c,表示农场 a a a 比农场 b b b 至多多种植了 c c c 个单位的作物;
- 如果每行的第一个数是 3 3 3,接下来有两个整数 a , b a,b a,b,表示农场 a a a 种植的的数量和 b b b 一样多。
输出格式
如果存在某种情况与小 K 的记忆吻合,输出 Yes
,否则输出 No
。
样例 #1
样例输入 #1
3 3
3 1 2
1 1 3 1
2 2 3 2
样例输出 #1
Yes
提示
对于 100 % 100\% 100% 的数据,保证 1 ≤ n , m , a , b , c ≤ 5 × 1 0 3 1 \le n,m,a,b,c \le 5 \times 10^3 1≤n,m,a,b,c≤5×103。
分析
差分约束模型,把每个都分析一下:
- 农场 a a a 比农场 b b b 至少多种植了 c c c 个单位的作物: x a − c ≥ x b x_a-c \ge x_b xa−c≥xb,构成(a,b,-c)
- 农场 a a a 比农场 b b b 至多多种植了 c c c 个单位的作物: x b + c ≥ x a x_b+c \ge x_a xb+c≥xa,构成(b,a,c)
- 农场 a a a 与农场 b b b 种植的作物数一样多: x a = x b → x a ≥ x b , x b ≥ x a x_a=x_b \to x_a \ge x_b,x_b \ge x_a xa=xb→xa≥xb,xb≥xa,构成(a,b,0),(b,a,0)
代码
#include<bits/stdc++.h>
using namespace std;
const int MAXN=1e8+5,M=1e6;
vector<pair<int,int> > edges[M];
int dis[M];
int n,m,s;
int cnt[M];
bool inQueue[MAXN];
int q[MAXN],f=1,t=1;
void add(int u,int v,int w){edges[u].emplace_back(v,w);}
void read(){cin>>n>>m;for(int i=1,u,v,w,opt;i<=m;i++) {cin>>opt>>u>>v;if(opt<3) cin>>w;if(opt==1) add(u,v,-w);if(opt==2) add(v,u,w);if(opt==3) {add(u,v,0);add(v,u,0);} }
}
bool spfa(int s=0)
{memset(dis,0x3f,sizeof(dis));dis[s]=0;q[t++]=s;inQueue[s]=true;while(f<t){int x=q[f++];inQueue[x]=false;for(auto& edge:edges[x]){if(dis[edge.first]<=dis[x]+edge.second) continue;dis[edge.first]=dis[x]+edge.second;if(!inQueue[edge.first]){q[t++]=edge.first;inQueue[edge.first]=true;cnt[edge.first]++;if(cnt[edge.first]>=n+1) return false;}}}return true;
}
void solve(){for(int i=1;i<=n;i++) add(0,i,0);if(!spfa()) cout<<"No"; else cout<<"Yes";
}
int main()
{read();solve();return 0;
}
分析
1.超级源点
void solve(){for(int i=1;i<=n;i++) add(0,i,0);if(!spfa()) cout<<"No"; else cout<<"Yes";
}
差分约束需要超级源点,需要与每个点构成一条边,权值为0,因为spfa可以有效判断负环,if(cnt[edge.first]>=n+1) return false;
需要注意,此处为n+1,因为有超级源点
2.效率问题
STL库中的queue效率低下,常数较高,在不开O2的前提下容易tle,推荐手打队:
- q.push(x) → \to →q[tail++]=x;
- q.pop() → \to → head++;
- q.top() → \to → q[head]
相关文章:
P1993 小 K 的农场
小 K 的农场 题目描述 小 K 在 MC 里面建立很多很多的农场,总共 n n n 个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共 m m m 个),以下列三种形式描述:…...

Spring boot 集成 Skywalking 配置 || Skywalking 打不开【已解决】
一、Skywalking官网 Apache SkyWalking 1.下载Skywalking APM (如果下载最新的,双击打开闪退,选老点的版本) 2. 下载 Skywalking Agents 如果下载太慢,建议复制下载链接,然后用下载器下载,比…...
手把手教你使用 ftrace 对 Linux 系统进行 debug
1、简介 strace:用来跟踪 Linux 进程执行时的系统调用和接收所接收的信号,可以跟踪到一个进程产生的系统调用,包括参数,返回值,执行消耗的时间。 ftrace:是一个 Linux 内核函数跟踪器,function tracer,旨在帮助开发人员和系统设计者可以找到内核内部发生的事情,从 L…...

【练】要求定义一个全局变量 char buf[] = “1234567“,创建两个线程,不考虑退出条件,打印buf
要求定义一个全局变量 char buf[] "1234567",创建两个线程,不考虑退出条件,另: A线程循环打印buf字符串,B线程循环倒置buf字符串,即buf中本来存储1234567,倒置后buf中存储7654321. 不…...

iOS Viper架构(中文版)【看懂这篇就够了】
完整源码地址 一、iOS_Viper iOS的Viper架构,作为一个从业多年的iOS开发者,我个人认为应该要会一点viper 二、前言 viper的设计模式在iOS开发中不流行,甚至是Swift中,也没有用,我认为比较可惜。作为iOSer,当你掌握…...

深入理解缓存 TLB 原理
今天分享一篇TLB的好文章,希望大家夯实基本功,让我们一起深入理解计算机系统。 TLB 是 translation lookaside buffer 的简称。首先,我们知道 MMU 的作用是把虚拟地址转换成物理地址。 MMU工作原理 虚拟地址和物理地址的映射关系存储在页表…...

获取k8s scale资源对象的命令
kubectl get --raw /apis/<apiGroup>/<apiVersion>/namespaces/<namespaceName>/<resourceKind>/<resourceName>/scale 说明:scale资源对象用来水平扩展k8s资源对象的副本数,它是作为一种k8s资源对象的子资源存在…...

基于ChatYuan-large-v2 语言模型 Fine-tuning 微调训练 广告生成 任务
一、ChatYuan-large-v2 ChatYuan-large-v2是一个开源的支持中英双语的功能型对话语言大模型,与其他 LLM 不同的是模型十分轻量化,并且在轻量化的同时效果相对还不错,仅仅通过0.7B参数量就可以实现10B模型的基础效果,正是其如此的…...

SpringBoot集成Logback日志
SpringBoot集成Logback日志 文章目录 SpringBoot集成Logback日志一、什么是日志二、Logback简单介绍三、SpringBoot项目中使用Logback四、概念介绍一、日志记录器Logger1.1、日志记录器对象生成1.2、记录器的层级结构1.3、过滤器1.4、logger设置日志级别1.5、java代码演示1.6、…...

MATLAB(R2023a)添加工具箱TooLbox的方法-以GPOPS为例
一、找到工具箱存放位置 首先我们需要找到工具箱的存放位置,点击这个设置路径可以看到 我们的matlab工具箱的存放位置 C:\Program Files\MATLAB\R2023a\toolbox\matlab 从资源管理器中打开这个位置,可以看到里面各种工具箱 二、放入工具箱 解压我们…...

助力618-Y的混沌实践之路 | 京东云技术团队
一、写在前面 1、混沌是什么? 混沌工程(Chaos Engineering)的概念由 Netflix 在 2010 年提出,通过主动向系统中引入异常状态,并根据系统在各种压力下的行为表现确定优化策略,是保障系统稳定性的新型手段。…...
Python系统学习1-4-物理行、逻辑行、选择语句
一、行 (1) 物理行:程序员编写代码的行。 (2) 逻辑行:python解释器需要执行的指令。 (3) 建议: 一个逻辑行在一个物理行上。 如果一个物理行中使用多个逻辑行,需要使用分号;隔开。 (4) 换行: 如果…...

学习系统编程No.35【基于信号量的CP问题】
引言: 北京时间:2023/8/2/12:52,时间飞逝,恍惚间已经来到了八月,给我的第一感觉就是快开学了,别的感觉其实没有,哈哈!看着身边的好友网络相关知识都要全部学完了,就好像…...

词嵌入、情感分类任务
目录 1.词嵌入(word embedding) 对单词使用one-hot编码的缺点是难以看出词与词之间的关系。 所以需要使用更加特征化的表示(featurized representation),如下图所示,我们可以得到每个词的向量表达。 假设…...
TypeScript使用技巧
文章目录 使用技巧TypeScript内置的工具类型keyofextends 限定泛型interface 与 type 区别 TypeScript作为JavaScript的超集,通过提供静态类型系统和对ES6新特性的支持,使JavaScript开发变得更加高效和可维护。掌握TypeScript的使用技巧,可以帮助我们更好地开发和组织JavaScrip…...

MySQL — InnoDB事务
文章目录 事务定义事务特性事务隔离级别READ UNCOMMITTEDREPEATABLE READREAD COMMITTEDSERIALIZABLE 事务存在的问题脏读(Dirty Read)不可重复读(Non-repeatable Read)幻读(Phantom Read) 事务定义 数据库…...

LeetCode 42. 接雨水(动态规划 / 单调栈)
题目: 链接:LeetCode 42. 接雨水 难度:困难 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。 示例 1: 输入:height [0,1,0,2,1,0,1,3,2,1,2…...

顺序表、链表刷题指南(力扣OJ)
目录 前言 题目一:删除有序数组中的重复项 思路: 题解: 题目二:合并两个有序数组 思路: 分析: 题解: 题目三:反转链表 思路: 分析: 题解: 题目四&…...
Lambda表达式总结
Lambda作为Java8的新特性,本篇文章主要想总结一下常用的一下用法和api 1.接口内默认方法实现 public interface Formula {double calculate(int a);// 默认方法default double sqrt(int a) {return Math.sqrt(a);} }public static void main(String[] args) {Form…...
岛屿的最大面积
给你一个大小为 m x n 的二进制矩阵 grid 。 岛屿 是由一些相邻的 1 (代表土地) 构成的组合,这里的「相邻」要求两个 1 必须在 水平或者竖直的四个方向上 相邻。你可以假设 grid 的四个边缘都被 0(代表水)包围着。 岛屿的面积是岛上值为 1 …...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...

VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...

DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
leetcodeSQL解题:3564. 季节性销售分析
leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
音视频——I2S 协议详解
I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...

Razor编程中@Html的方法使用大全
文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...