【PyTorch】nn.Conv2d函数详解
nn.Conv2d 是 PyTorch 中的一个卷积层,用于实现二维卷积操作
torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None
)
参数解释
in_channels:输入的通道数,RGB 图像的输入通道数为 3
out_channels:输出的通道数
kernel_size:卷积核的大小,一般我们会使用 5x5、3x3 这种左右两个数相同的卷积核,因此这种情况只需要写 kernel_size = 5这样的就行了。如果左右两个数不同,比如3x5的卷积核,那么写作kernel_size = (3, 5),注意需要写一个 tuple,而不能写一个 list。
stride = 1:卷积核在图像窗口上每次平移的间隔,即所谓的步长。
padding:指图像填充,后面的int型常数代表填充的多少(行数、列数),默认为0。需要注意的是这里的填充包括图像的上下左右,以padding=1为例,若原始图像大小为[32, 32],那么padding后的图像大小就变成了[34, 34]
dilation:是否采用空洞卷积,默认为1(不采用)。从中文上来讲,这个参数的意义从卷积核上的一个参数到另一个参数需要走过的距离,那当然默认是1了,毕竟不可能两个不同的参数占同一个地方吧(为0)。更形象和直观的图示可以观察Github上的Dilated convolution animations,展示了dilation=2的情况。
groups:决定了是否采用分组卷积,groups参数可以参考groups参数详解
bias:即是否要添加偏置参数作为可学习参数的一个,默认为True。
padding_mode:即padding的模式,默认采用零填充。
nn.Conv2d 的使用方法一般如下:
import torch.nn as nn
# 定义卷积层
conv = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1)# 输入数据
x = torch.randn(1, 3, 224, 224)# 前向计算
out = conv(x)
这里我们定义了一个输入通道数为 3,输出通道数为 32,卷积核大小为 3x3,步长为 1,边界填充数为 1 的卷积层。然后,我们定义了一个大小为 (1, 3, 224, 224) 的输入数据 x,执行前向计算得到输出 out。
注意,对于卷积操作,输入数据一般为四维张量,需要按照 batchsize × 通道数 × 高度 × 宽度的维度排列,这里 x 的大小为 (1, 3, 224, 224) 表示 batchsize 为 1,通道数为 3,输入图像的尺寸为 224x224。
参考:https://blog.csdn.net/weixin_40895135/article/details/130034019
https://blog.csdn.net/See_Star/article/details/127560160
相关文章:
【PyTorch】nn.Conv2d函数详解
nn.Conv2d 是 PyTorch 中的一个卷积层,用于实现二维卷积操作 torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride1, padding0, dilation1, groups1, biasTrue, padding_modezeros, deviceNone, dtypeNone )参数解释 in_channels:输入的通…...
数智保险 创新未来 | GBASE南大通用亮相中国保险科技应用高峰论坛
本届峰会以“数智保险 创新未来”为主题,GBASE南大通用携新一代创新数据库产品及金融信创解决方案精彩亮相,与国内八百多位保险公司高管和众多保险科技公司技术专家,就保险领域数字化的创新应用及生态建设、新一代技术突破及发展机遇、前沿科…...
分布式天梯图算法在 Redis 图数据库中的应用
分布式天梯图算法在 Redis 图数据库中的应用 一、简介1 天梯图算法2 天梯图算法在Redis的应用 二、Redis分布式天梯图算法设计与优化1 基于天梯图的分布式算法设计2 多节点扩展与负载均衡优化3 数据存储方案与压缩策略 三、技术实现3.1 系统架构设计3.2 技术选型3.3 关键实现细…...
观察者模式——对象间的联动
1、简介 1.1、概述 在软件系统中,有些对象之间也存在类似交通信号灯和汽车之间的关系。一个对象的状态或行为的变化将导致其他对象的状态或行为也发生改变,它们之间将产生联动,正所谓“触一而牵百发”。为了更好地描述对象之间存在的这种一…...
【雕爷学编程】Arduino动手做(189)---特别苗条,使用微波传感器控制的纤细小车
装修屋子,找了一段墙面布线槽,外槽宽度只有23毫米,截取一段长为24厘米,尝试做个苗条小车 先在线槽上安装了二只N20小电机 装上二个快餐盒盖做轮子 测试一下使用3.7V锂电池的动力系统(视频) https://v.youk…...
机器学习基础算法及其实现
线性回归 知识点: 1. 线性回归模型可以使用不同的目标函数,最常用的是最小二乘法、最小绝对值法和最大似然法。 2. 在最小二乘法中,目标是最小化实际值与预测值之间的误差平方和,这可以通过求导数等方法来求解。 3. 在最小绝对值…...
docker安装MinIO
简介 Minio 是一个面向对象的简单高性能存储服务。使用 Go 语言编写,性能高、具有跨平台性。 Minio 官网为:https://min.io ,有一个中文站点,单内容更新不是很及时,建议从原始官网学习。 本文采用 Docker 安装&…...
第5章 运算符、表达式和语句
本章介绍以下内容: 关键字:while、typedef 运算符:、-、*、/、%、、--、(类型名) C语言的各种运算符,包括用于普通数学运算的运算符 运算符优先级以及语句、表达式的含义 while循环 复合语句、自动类型转换和强制类型转换 如何编写…...
24考研数据结构-图的存储结构邻接矩阵
目录 6.3 储存结构(邻接表表示法)1. 储存方式2. 结构3. 图的邻接表存储表示(算法)4. 结论5. 邻接矩阵和邻接表的对比邻接矩阵优点:缺点: 邻接表优点:缺点: 邻接矩阵与邻接表的关系 6…...
在线推算两个日期相差天数的计算器
具体请前往:在线推算两个日期相差天数的计算器...
Spring源码解析(七):bean后置处理器AutowiredAnnotationBeanPostProcessor
Spring源码系列文章 Spring源码解析(一):环境搭建 Spring源码解析(二):bean容器的创建、默认后置处理器、扫描包路径bean Spring源码解析(三):bean容器的刷新 Spring源码解析(四):单例bean的创建流程 Spring源码解析(五)&…...
【C#学习笔记】引用类型(1)
文章目录 引用类型class匿名类 记录引用相等和值相等record声明 接口delegate 委托合并委托/多路广播委托 引用类型 引用类型的变量存储对其数据(对象)的引用,而值类型的变量直接包含其数据。 对于引用类型,两种变量可引用同一对…...
STM32CubeMX+VSCODE+EIDE+RT-THREAD 工程创建
Eide环境搭建暂且不表,后续补充。主要记录下Vscode环境下 创建Rt-thread工程的过程。分别介绍STM32CubeMX添加rtt支持包的方式和手动添加rtt kernel方式。STM32CubeMX生成工程的时候有"坑",防止下次忘记,方便渡一下有缘人ÿ…...
java中javamail发送带附件的邮件实现方法
java中javamail发送带附件的邮件实现方法 本文实例讲述了java中javamail发送带附件的邮件实现方法。分享给大家供大家参考。具体分析如下: JavaMail,顾名思义,提供给开发者处理电子邮件相关的编程接口。它是Sun发布的用来处理email的API。它…...
Stable Diffusion高阶技能(2)-稳定扩散百态:解密AI绘画工具「SD WebUI」的提示词高级使用策略
简介 在我们的生活中,艺术元素可谓无处不在,而处于中心地位的绘画,无疑是携带着强烈的艺术魅力。现如今随着AI技术的日新月异,AI绘画对我们的生活世界的改造影响越来越深远。那么,如何让我们在AI绘画工具中更好的指导AI完成我们心中的作品呢? 这需要我们玩转这个工具的…...
【果树农药喷洒机器人】Part2:机器人变量喷药系统硬件选型
本专栏介绍:付费专栏,持续更新机器人实战项目,欢迎各位订阅关注。 关注我,带你了解更多关于机器人、嵌入式、人工智能等方面的优质文章! 文章目录 一、引言二、变量喷药系统总体要求2.1系统功能要求2.2系统技术要求三、机器人关键硬件选型3.1深度相机概述与选型3.2单片机选…...
解决vite+vue3项目npm装包失败
报错如下: Failed to remove some directories [ npm WARN cleanup [ npm WARN cleanup D:\\V3Work\\v3project\\node_modules\\vue, npm WARN cleanup [Error: EPERM: operation not permitted, rmdir D:\V3Work\v3project\node_modules\vue\reactivity\…...
Rust之错误处理
在Rust中,将错误分为两种,可恢复错误和不可恢复错误。所谓可恢复错误就是指类似于文件未找到这类错误,一般需要将它们报告给用户并再次尝试进行操作,而不可恢复错误往往就是Bug,需要停止程序的运行。 1、不可恢复错误…...
docker compose快速编排
Docker-compose概述 Docker-Compose项目是Docker官方的开源项目,负责实现对Docker容集群的快速编排 Docker-Compose将所管理的容器分为三层,分别是工程(project),服务(service)以及容器&#x…...
java.io.File类的使用
文章目录 概述构造器常用方法1、获取文件和目录基本信息2、列出目录的下一级3.File类的重命名功能4、判断功能的方法5、创建、删除功能 练习 概述 File类及本章下的各种流,都定义在java.io包下。一个File对象代表硬盘或网络中可能存在的一个文件或者文件目录&#…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
day36-多路IO复用
一、基本概念 (服务器多客户端模型) 定义:单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用:应用程序通常需要处理来自多条事件流中的事件,比如我现在用的电脑,需要同时处理键盘鼠标…...
OD 算法题 B卷【正整数到Excel编号之间的转换】
文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的:a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...
yaml读取写入常见错误 (‘cannot represent an object‘, 117)
错误一:yaml.representer.RepresenterError: (‘cannot represent an object’, 117) 出现这个问题一直没找到原因,后面把yaml.safe_dump直接替换成yaml.dump,确实能保存,但出现乱码: 放弃yaml.dump,又切…...
高效的后台管理系统——可进行二次开发
随着互联网技术的迅猛发展,企业的数字化管理变得愈加重要。后台管理系统作为数据存储与业务管理的核心,成为了现代企业不可或缺的一部分。今天我们要介绍的是一款名为 若依后台管理框架 的系统,它不仅支持跨平台应用,还能提供丰富…...
