当前位置: 首页 > news >正文

决策树和随机森林对比

1.用accuracy来对比

# -*-coding:utf-8-*-"""
accuracy来对比决策树和随机森林
"""
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_wine#(178, 13)
wine=load_wine()
# print(wine.data.shape)
print(wine.target)
from sklearn.model_selection import train_test_split
Xtrain,Xtest,Ytrain,Ytest=train_test_split(wine.data,wine.target,test_size=0.3)clf=DecisionTreeClassifier(random_state=0)
rfc=RandomForestClassifier(random_state=0)clf=clf.fit(Xtrain,Ytrain)
rfc=rfc.fit(Xtrain,Ytrain)#score就是accuracy
score_c=clf.score(Xtest,Ytest)
score_rfc=rfc.score(Xtest,Ytest)print("Single Tree:{}".format(score_c),"Random Forest:{}".format(score_rfc))
Single Tree:0.8703703703703703 Random Forest:1.0

2.交叉熵验证对比

# -*-coding:utf-8-*-
"""
交叉熵来对比决策树和随机森林
"""
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_wine
from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt
plt.switch_backend("TkAgg")
#(178, 13)
wine=load_wine()
# print(wine.data.shape)
print(wine.target)
from sklearn.model_selection import train_test_split
Xtrain,Xtest,Ytrain,Ytest=train_test_split(wine.data,wine.target,test_size=0.3)rfc=RandomForestClassifier(n_estimators=25)
rfc_s=cross_val_score(rfc,wine.data,wine.target,cv=10)clf=DecisionTreeClassifier()
clf_s=cross_val_score(clf,wine.data,wine.target,cv=10)plt.plot(range(1,11),rfc_s,label="RandomForest")
plt.plot(range(1,11),clf_s,label="DecisionTree")
plt.legend()
plt.show()

 3.多次平均交叉熵对比

# -*-coding:utf-8-*-"""
交叉熵平均来对比决策树和随机森林
"""
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_wine
from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt
plt.switch_backend("TkAgg")
#(178, 13)
wine=load_wine()
# print(wine.data.shape)
print(wine.target)
from sklearn.model_selection import train_test_split
Xtrain,Xtest,Ytrain,Ytest=train_test_split(wine.data,wine.target,test_size=0.3)rfc_mc=[]
clf_mc=[]for i in range(10):rfc=RandomForestClassifier(n_estimators=25)rfc_s=cross_val_score(rfc,wine.data,wine.target,cv=10).mean()rfc_mc.append(rfc_s)clf=DecisionTreeClassifier()clf_s=cross_val_score(clf,wine.data,wine.target,cv=10).mean()clf_mc.append(clf_s)plt.plot(range(1,11),rfc_mc,label="Random Forest")
plt.plot(range(1,11),clf_mc,label="Decision Tree")
plt.legend()
plt.show()

 4.选择合适的estimators

为随机森林选择合适的决策树的数量

# -*-coding:utf-8-*-
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_wine
from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt
plt.switch_backend("TkAgg")
#(178, 13)
wine=load_wine()
# print(wine.data.shape)
print(wine.target)
from sklearn.model_selection import train_test_split
Xtrain,Xtest,Ytrain,Ytest=train_test_split(wine.data,wine.target,test_size=0.3)superpa=[]
for i in range(200):rfc=RandomForestClassifier(n_estimators=i+1,n_jobs=-1)rfc_s=cross_val_score(rfc,wine.data,wine.target,cv=10).mean()superpa.append(rfc_s)
print(max(superpa),superpa.index(max(superpa))+1)
plt.figure(figsize=[20,5])
plt.plot(range(1,201),superpa)
plt.show()
0.9888888888888889 26

 

 

相关文章:

决策树和随机森林对比

1.用accuracy来对比 # -*-coding:utf-8-*-""" accuracy来对比决策树和随机森林 """ from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.datasets import load_wine#(178, 13…...

CS 144 Lab Seven -- putting it all together

CS 144 Lab Seven -- putting it all together 引言测试lab7.ccUDPSocketNetworkInterfaceAdapterTCPSocketLab7main方法子线程 小结 对应课程视频: 【计算机网络】 斯坦福大学CS144课程 Lab Six 对应的PDF: Checkpoint 6: putting it all together 引言 本实验无需进行任何编…...

opencv基础-29 Otsu 处理(图像分割)

Otsu 处理 Otsu 处理是一种用于图像分割的方法,旨在自动找到一个阈值,将图像分成两个类别:前景和背景。这种方法最初由日本学者大津展之(Nobuyuki Otsu)在 1979 年提出 在 Otsu 处理中,我们通过最小化类别内…...

gcc-buildroot-9.3.0 和 gcc-arm-10.3 的区别

gcc-buildroot-9.3.0 和 gcc-arm-10.3 是两个不同的 GCC (GNU Compiler Collection) 版本,主要用于编译 C、C 和其他语言的程序。它们之间的区别主要体现在以下几个方面: 版本号:gcc-buildroot-9.3.0 对应的是 GCC 9.3.0 版本,而 …...

IDEA Run SpringBoot程序步骤原理

这个文章不是高深的原理文章,仅仅是接手一个外部提供的阉割版代码遇到过的一个坑,后来解决了,记录一下。 1、IDEA Run 一个SpringBoot一直失败,提示找不到类,但是maven install成功,并且java -jar能成功ru…...

海康威视摄像头配置RTSP协议访问、onvif协议接入、二次开发SDK接入

一、准备工作 (1)拿到摄像头之后,将摄像头电源线插好,再将网线插入到路由器上。 (2)将自己的笔记本电脑也连接到路由器网络,与摄像头出在同一个局域网。 二、配置摄像头 2.1 激活方式选择 第一次使用设备需要激活,在进行配置。 最简单,最方便的方式是选择浏览器激…...

Android中的Parcelable 接口

Android中的Parcelable 接口 在Android中,Parcelable接口是用于实现对象序列化和反序列化的一种机制。它允许我们将自定义的Java对象转换成一个可传输的二进制数据流,以便在不同组件之间传递数据。通常在Activity之间传递复杂的自定义对象时&#xff0c…...

Docker-Compose编排与部署

目录 Docker Compose Compose的优点 编排和部署 Compose原理 Compose应用案例 安装docker-ce 阿里云镜像加速器 安装docker-compose docker-compose用法 Yaml简介 验证LNMP环境 Docker Compose Docker Compose 的前身是 Fig,它是一个定义及运行多个 Dock…...

Linux JDK 安装

文章目录 安装步骤1、卸载openJDK1.1 查看当前Linux系统是否安装java,卸载openjdk1.2 卸载系统中已经存在的openJDK 2、在/usr/local目录下创建java目录3、上传JDK到Linux系统4、解压jdk5、配置Jdk环境变量6、重新加载/etc/profile文件,让配置生效7、测试安装是否成…...

JS中常用的数组拷贝技巧

我们都知道,数组也是属于对象,在JS中对象的存储方式则是引用的方式。我们想要拷贝一个数组,就不能只是变量之前的赋值拷贝,这样他们将共享同一个引用,而数组又具有可变性,所以无法将原数组和拷贝的数组的数…...

SAP ABAP程序性能优化-养成良好的代码习惯

ABAP程序基本上都需要从数据库里面抓数,所以性能很重要,同时有一些基本的,和优秀的写法是我们必须要掌握的,不然就会造成程序性能很差。下面给予总结(这里包括有很基本的,也包括有比较少用到的)…...

SQL SERVER ip地址改别名

SQL server在使用链接服务器时必须使用别名,使用ip地址就会把192.188.0.2这种点也解析出来 解决方案: 1、物理机ip 192.168.0.66 虚拟机ip 192.168.0.115 2、在虚拟机上找到 C:\Windows\System32\drivers\etc 下的 (我选中的文件&a…...

数据结构-1

1.2 线性结构树状结构网状结构(表 数 图) 数据:数值型 非数值型 1.2.3数据类型和抽象数据类型 1.3抽象数据类型 概念小结: 线性表: 如果在独立函数实现的 .c 文件中需要包含 stdlib.h 头文件,而主函数也需要包含 st…...

Java自定义校验注解实现List、set集合字段唯一性校验

文章目录 一: 使用场景二: 定义FieldUniqueValid注解2.1 FieldUniqueValid2.2 注解说明2.3 Constraint 注解介绍2.4 FieldUniqueValid注解使用 三:自定义FieldUniqueValidator校验类3.1 实现ConstraintValidator3.2 重写initialize方法3.3 重…...

xiaoweirobot.chat

目录 1 xiaoweirobot.chat 1.1 DetailList 2 HttpData 2.1 doInBackground 2.2 onPostExecute xiaoweirobot.chatpackage com.shrimp.xiaoweirobot.chat; DetailList <...

【无公网IP】本地电脑搭建个人博客网站(并发布公网访问 )和web服务器

【无公网IP】本地电脑搭建个人博客网站&#xff08;并发布公网访问 &#xff09;和web服务器 文章目录 【无公网IP】本地电脑搭建个人博客网站&#xff08;并发布公网访问 &#xff09;和web服务器前言1. 安装套件软件2. 创建网页运行环境 指定网页输出的端口号3. 让WordPress在…...

SpringCloud(29):Nacos简介

1 什么是配置中心 1.1 什么是配置 应用程序在启动和运行的时候往往需要读取一些配置信息&#xff0c;配置基本上伴随着应用程序的整个生命周期&#xff0c;比如&#xff1a;数据库连接参数、启动参数等。 配置主要有以下几个特点&#xff1a; 配置是独立于程序的只读变量 …...

freeBSD - 笔记

1 介绍 FreeBSD&#xff1a; FreeBSD是由FreeBSD项目团队开发的&#xff0c;最早可以追溯到1993年。它专注于性能、稳定性和可靠性&#xff0c;并在服务器和高性能计算环境中广泛使用。FreeBSD有着强大的网络性能和高度优化的TCP/IP协议栈&#xff0c;因此在网络服务器领域表…...

【Linux】网络基础——宏观认识计算机网络

1 计算机网络背景 网络发展 独立模式: 计算机之间相互独立; 一开始&#xff0c;计算机发明出来之后&#xff0c;一台计算机处理完的数据&#xff0c;数据会保存在软盘&#xff08;物理&#xff09;&#xff0c;通过人之间的相互通信&#xff0c;把计算机A处理完的数据存储到软…...

数字人现身大运会,怎么以动作捕捉技术助推运动与文博相结合

中国移动动感地带数字人橙络络&#xff0c;作为数智体验官以元宇宙的视角&#xff0c;带领观众沉浸式体验大运会&#xff0c;以极具科技和未来的数字人&#xff0c;对外传递大运青春风采&#xff0c;并且数字人橙络络还对大运会的赛事、活动进行了科普、讲解以及表演当地特色才…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

爬虫基础学习day2

# 爬虫设计领域 工商&#xff1a;企查查、天眼查短视频&#xff1a;抖音、快手、西瓜 ---> 飞瓜电商&#xff1a;京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空&#xff1a;抓取所有航空公司价格 ---> 去哪儿自媒体&#xff1a;采集自媒体数据进…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

QT3D学习笔记——圆台、圆锥

类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体&#xff08;对象或容器&#xff09;QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质&#xff08;定义颜色、反光等&#xff09;QFirstPersonC…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...

日常一水C

多态 言简意赅&#xff1a;就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过&#xff0c;当子类和父类的函数名相同时&#xff0c;会隐藏父类的同名函数转而调用子类的同名函数&#xff0c;如果要调用父类的同名函数&#xff0c;那么就需要对父类进行引用&#…...

Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析

Java求职者面试指南&#xff1a;Spring、Spring Boot、Spring MVC与MyBatis技术解析 一、第一轮基础概念问题 1. Spring框架的核心容器是什么&#xff1f;它的作用是什么&#xff1f; Spring框架的核心容器是IoC&#xff08;控制反转&#xff09;容器。它的主要作用是管理对…...