当前位置: 首页 > news >正文

PyTorch常用的损失函数(ChatGPT)

L1Loss

nn.L1Loss 也称为平均绝对误差(Mean Absolute Error,MAE)。它计算预测值与真实值之间的差异(即误差),然后取绝对值并求和,最后除以样本数量得到平均误差。具体来说,对于一批大小为 NNN 的样本,nn.L1Loss 的计算公式如下:

在这里插入图片描述

其中,xxx 为模型的预测输出,yyy 为样本的真实标签。

nn.L1Loss 通常用于回归问题中,例如预测房价、预测人的年龄等。它的优点是可以对异常值不敏感,即单个异常值不会对整体误差产生过大的影响。因此,它经常被用作回归问题的基准指标。

在 PyTorch 中,可以通过调用 nn.L1Loss() 函数来创建一个 L1 损失函数的实例。同时,它也可以作为一个组件被添加到神经网络模型中,用于反向传播计算梯度。

MSELoss

nn.MSELoss 也称为均方误差(Mean Squared Error,MSE)。它计算预测值与真实值之间的差异(即误差),然后取平方并求和,最后除以样本数量得到平均误差。具体来说,对于一批大小为 NNN 的样本,nn.MSELoss 的计算公式如下:

在这里插入图片描述

其中,xxx 为模型的预测输出,yyy 为样本的真实标签。

nn.MSELoss 也通常用于回归问题中,例如预测房价、预测人的年龄等。它的优点是对误差的大值敏感,因此可以使模型更加关注样本中误差较大的部分,从而提高模型的准确性。

在 PyTorch 中,可以通过调用 nn.MSELoss() 函数来创建一个 MSE 损失函数的实例。同时,它也可以作为一个组件被添加到神经网络模型中,用于反向传播计算梯度。

CrossEntropyLoss

nn.CrossEntropyLoss 用于多分类问题中。它的计算方式是将 Softmax 函数的输出和真实标签作为输入,然后计算它们的交叉熵损失(Cross-entropy Loss)。具体来说,对于一批大小为 NNN 的样本,nn.CrossEntropyLoss 的计算公式如下:

在这里插入图片描述

其中,xxx 为模型的预测输出,yyy 为样本的真实标签。

nn.CrossEntropyLoss 在内部自动进行 Softmax 计算,因此输入的 xxx 不需要经过 Softmax 函数处理。在计算过程中,交叉熵损失越小,表示模型预测的结果和真实结果越接近,模型的性能也越好。

在 PyTorch 中,可以通过调用 nn.CrossEntropyLoss() 函数来创建一个交叉熵损失函数的实例。同时,它也可以作为一个组件被添加到神经网络模型中,用于反向传播计算梯度。

BCELoss

nn.BCELoss 也称为二元交叉熵损失(Binary Cross-Entropy Loss)。它的计算方式是将模型的预测输出和真实标签作为输入,然后计算它们之间的二元交叉熵损失。具体来说,对于一批大小为 NNN 的样本,nn.BCELoss 的计算公式如下:

在这里插入图片描述

其中,xxx 为模型的预测输出,yyy 为样本的真实标签。该损失函数适用于二分类问题,其中每个样本只有两种可能的类别标签。对于多分类问题,通常使用 nn.CrossEntropyLoss

nn.BCELoss 在内部自动进行 Sigmoid 计算,因此输入的 xxx 不需要经过 Sigmoid 函数处理。在计算过程中,二元交叉熵损失越小,表示模型预测的结果和真实结果越接近,模型的性能也越好。

在 PyTorch 中,可以通过调用 nn.BCELoss() 函数来创建一个二元交叉熵损失函数的实例。同时,它也可以作为一个组件被添加到神经网络模型中,用于反向传播计算梯度。

参考

https://chat.openai.com/chat/

相关文章:

PyTorch常用的损失函数(ChatGPT)

L1Loss nn.L1Loss 也称为平均绝对误差(Mean Absolute Error,MAE)。它计算预测值与真实值之间的差异(即误差),然后取绝对值并求和,最后除以样本数量得到平均误差。具体来说,对于一批…...

LeetCode——1237. 找出给定方程的正整数解

一、题目 来源:力扣(LeetCode) 链接:https://leetcode.cn/problems/find-positive-integer-solution-for-a-given-equation/description/ 翻译一下题目 意思是,这是一个二维单调递增的函数,函数一共有 9 …...

系统编程中的进程的概念No.3【进程状态】

引言: 北京时间:2023/2/17/8:17,目前听着超能陆战队主题曲《Immortals》,感觉又要螺旋式升天,并且为我今天上午没课感到happy,所以继我们很久以前的关于进程的博客,今天我们就再来学习一下有关…...

推荐 3 款 Golang 语义化版本库

文章目录1.什么是语义化版本 2.0.02.Golang 语义化版本库比较3.小结参考文献1.什么是语义化版本 2.0.0 语义化版本 2.0.0(Semantic Versioning 2.0.0)是一种用于标识软件版本的约定和规范。它包含三个数字组成的版本号,格式为“MAJOR.MINOR.…...

Windows平台使用gdb连接qemu虚拟机上的系统

先安装MinGW; 除了gcc、g,把gdb也选上;可能选第一个就可以了,不清楚把后面几个也选上; 安装完成看一下gcc, g,gdb,编译工具和调试器都有了; 把bin目录加到环境变量; 看一…...

【博客624】MAC地址表、ARP表、路由表(RIB表)、转发表(FIB表)

MAC地址表、ARP表、路由表(RIB表/FIB表) MAC地址表 MAC地址表是交换机等网络设备记录MAC地址和端口的映射关系,代表了交换机从哪个端口学习到了某个MAC地址,交换机把这个信息记录下来,后续交换机需要转发数据的时候就可以根据报文的目的MAC地…...

【蓝桥日记⑤】2014第五届省赛(软件类)JavaA组❆答案解析

【蓝桥日记⑤】2014第五届省赛(软件类)JavaA组☃答案解析 文章目录【蓝桥日记⑤】2014第五届省赛(软件类)JavaA组☃答案解析1、猜年龄2、李白打酒3、神奇算式4、写日志5、锦标赛6、六角填数7、绳圈8、兰顿蚂蚁9、斐波那契10、波动…...

Leetcode.1139 最大的以 1 为边界的正方形

题目链接 Leetcode.1139 最大的以 1 为边界的正方形 Rating : 1744 题目描述 给你一个由若干 0 和 1 组成的二维网格 grid,请你找出边界全部由 1 组成的最大 正方形 子网格,并返回该子网格中的元素数量。 如果不存在,则返回 0。…...

Bing+ChatGPT 对传统搜索引擎的降维打击

早些时候申请了新版 Bing 的内测资格,终于收到了通过的邮件。 一天的体验之后,我的感受是:当新版 Bing 具备了 ChatGPT 的聊天能力之后,它的能力不论是对传统搜索引擎,还是 ChatGPT 自身,都将是降维打击。 …...

【JS】数组常用方法总结-功能、参数、返回值

数组常用方法总结-功能、参数、返回值 用简单的js示例 运行在线工具:链接: 菜鸟工具 菜鸟工具示意图: ![在这里插入图片描述](https://img-blog.csdnimg.cn/de8589eb1acf42abb0347d8a3a3bbdfa.png 1.会改变原有数组方法 (1)pu…...

pytest 单元测试前后置处理

文章目录方法1 setup/teardown方法2 fixture 夹具方法3 conftest.py测试用例执行前后的一些处理动作,也叫夹具。以下介绍使用前后置操作的几种方法。方法1 setup/teardown setup,每个测试用例执行前要进行的处理。 teardown,每个测试用例执行…...

汽车安全硬件扩展 AUTOSAR SHE SecureHardwareExtensions

SHE(Secure Hardware Extension)在车联网中,被应用在车端ECU中负责安全存储与安全计算。是由HIS(由Audi、BMW、Porsche、Volkswagen组成)制定的标准,中文意思“安全硬件扩展”,是对任何给定微控…...

2023年美国大学生数学建模C题:预测Wordle结果建模详解+模型代码

目录 前言 一、题目理解 背景 解析 字段含义: 建模要求 二、建模思路 灰色预测: ​编辑 二次指数平滑法: person相关性 只希望各位以后遇到建模比赛可以艾特认识一下我,我可以提供免费的思路和部分源码,以后…...

5、HAL库驱动W25Qxx

一、 SPI通信驱动W25Qxx 1、使用驱动文件快速配置工程代码驱动W25Qxx (此驱动文件只适合W25Qxx 16M及以下型号,因为访问地址位数不同) 注:本次使用SPI的方式进行访问W25Qxx Flash进行数据读写,关于W25Qxx芯片不会做…...

git rebase 洐合(变基)

洐合 把一个分支整合到另一个分支的办法有两种:merge(合并) 和 rebase(衍合) 为什么使用? 使提交记录更简洁 三种情况 第一种: 合并多条commit记录 git rebase -i HEAD~合并数量 HEAD~3&a…...

Kubernetes 1.18学习笔记

文章目录一、Kubernetes 概述和架构1、kubernetes 基本介绍2、Kubernetes 功能3、Kubernetes 架构组件4、Kubernetes 核心概念5、Kubernetes 工作原理二、Kubernetes 集群搭建1、系统环境准备1.1 安装要求1.2 系统初始化2、客户端工具kubeadm搭建2.1 安装步骤2.2 安装组件2.3 集…...

AJAX技术

AJAX技术 浏览器是多进程的,简单的说就是,浏览器每打开一个标签页,就相当于创建了一个独立的浏览器进程。但是js是基于单线程的,而这个线程就是浏览器的js引擎,浏览器无论在什么时候都只且只有一个线程在运行JavaScri…...

华为OD机试 - 最大排列(JS)

最大排列 题目 给定一组整数,重排序后输出一个最大的整数 输入 数字组合 输出 最大的整数 示例一 输入 10 9输出 910解题思路 我们可以读入一个字符串,将字符串中的单词按照每个单词的字典序长度,字典序从大到小的顺序排序&#x…...

Prometheus Docker安装及监控自身

前提环境: Docker环境 涉及参考文档: 安装Prometheus开始 Prometheusnode_exporter Agent组件 一、部署Prometheus 1、启动容器将文件拷贝出来 docker run -d prom/prometheus2、容器将文件拷贝出来 docker cp 容器ID:/usr/share/prometheus/conso…...

点云处理PCL常用函数与工具

点云处理PCL常用函数与工具 文章目录点云处理PCL常用函数与工具前言一、点云读取与保存数据读取数据保存自定义的点云保存格式二、点云显示点云显示-根据颜色点云显示-根据指定轴数值点云显示-根据指定信息显示多组点云显示三、点云滤波直通滤波统计滤波均匀下采样滤波VoxelGri…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

.Net Framework 4/C# 关键字(非常用,持续更新...)

一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

安卓基础(aar)

重新设置java21的环境,临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的: MyApp/ ├── app/ …...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学(silicon photonics)的光波导(optical waveguide)芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中,光既是波又是粒子。光子本…...

中医有效性探讨

文章目录 西医是如何发展到以生物化学为药理基础的现代医学?传统医学奠基期(远古 - 17 世纪)近代医学转型期(17 世纪 - 19 世纪末)​现代医学成熟期(20世纪至今) 中医的源远流长和一脉相承远古至…...

NPOI Excel用OLE对象的形式插入文件附件以及插入图片

static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...

第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)

第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10pip3.10) 一:前言二:安装编译依赖二:安装Python3.10三:安装PIP3.10四:安装Paddlepaddle基础框架4.1…...