数据结构中一些零碎且易忘的知识点
树
- 并查集:
- 并查集的应用:
- 判断连通性、判环
- Kruskal算法=排序+并查集
- 并查集的存储方式
- 逻辑:双亲表示法的树
- 存储:数组
- 并查集的时间复杂度(m为并查集长度)
- find:优化前为 O ( m ) O(m) O(m);优化后为 O ( l o g 2 n ) O(log_{2}n) O(log2n)
- union: O ( 1 ) O(1) O(1)
- 总复杂度:优化前 O ( m 2 ) O(m^2) O(m2);优化后 O ( m ) O(m) O(m)
- 并查集的应用:
- 树、森林、二叉树遍历序列的关系
树 森林 二叉树 先根遍历 先序遍历 先序遍历 后根遍历 中序遍历 中序遍历 关于森林的中序遍历/后序遍历叫法问题:二者指森林的同一种遍历方法,都是先遍历第一棵树的子节点,然后是第一棵树的根节点,然后是第二棵树… 之所以称为中序遍历,是因为要先处理完一棵树再处理另一棵树。
图
- DFS与BFS算法的应用:
- DFS:
- 判断图的(强)连通性
- 无向图的连通性:若从任意一个节点出发,仅需一次DFS就可以访问图中所有节点,则该无向图就是连通的
- 有向图的强连通性:从任意一个节点v出发DFS,若可以遍历该有向图的所有节点,则此时将该有向图的所有边反向,再次从节点v出发进行DFS,若能够再次遍历该有向图的所有节点,则表示该有向图是强连通图
- 判断图中是否有环(回路)
- 欧拉回路求解:若一条路径能不重复的包含图中所有边,则称该路径为欧拉路径。若一条回路(从一个节点出发又能回到该节点的路径)是欧拉路径,则称为欧拉回路。DFS可以判断图中是否存在欧拉回路
- 迷宫
- 判断二分图
- 判断图的(强)连通性
- BFS:
- 求解单源最短路径问题(只适用于无权图)
- 迷宫
- 判断二分图
- DFS:
- 最短路径
- 有无环(回路)对Dijkstra算法并无影响,但Dijkstra算法不能求解存在负权值边的图;Floyd算法可以求带有负权值边的图,但图中不能存在负权回路(因为带有负权回路的图没有最短路径)
- Dijkstra算法是解决单源最短路径类问题,floyd算法是解决多源最短路径(指图中任意两个顶点之间的最短路径)类问题
- Dijkstra算法属于贪心算法,floyd算法属于动态规划算法
- 判断有向图是否有环(回路)的几种方法:
- 深度优先遍历:若在遍历过程中遇到要访问的节点已在栈中就是有环
- 拓扑排序:找不到拓扑序列必定有环
- 拓扑排序
- 在拓扑排序算法中,为暂存入度为零的顶点可以使用栈,也可以使用队列。(因为只要入了栈/队列,就都是入度为零的,从哪个入度为零的先开始都无所谓)
- 采用深度优先遍历也可实现拓扑排序
相关文章:
数据结构中一些零碎且易忘的知识点
树 并查集: 并查集的应用: 判断连通性、判环Kruskal算法排序并查集 并查集的存储方式 逻辑:双亲表示法的树存储:数组 并查集的时间复杂度(m为并查集长度) find:优化前为 O ( m ) O(m) O(m)&…...

2023上半年京东烘干机行业品牌销售排行榜(京东商品数据)
随着人们消费水平的提高,追求健康品质消费的用户越来越多,这样的消费升级为市场的发展带来很大的动力。同时,随着洗衣机市场趋向饱和,增长趋于平缓,更新换代和结构升级成为行业的主旋律。 在这一市场背景下࿰…...

ADS版图画封装学习笔记
ADS版图画封装 因为晶体管ATF54143在ADS中是没有封装的,所以要在ADS中画ATF54143的封装,操作步骤如下: 在ADS中新建layout,命名为ATF54143_layout, 根据datasheet知道封装的大小,进行绘制 在layout的con…...

空地协同智能消防系统——无人机、小车协同
1 题目 1.1 任务 设计一个由四旋翼无人机及消防车构成的空地协同智能消防系统。无人机上安装垂直向下的激光笔,用于指示巡逻航迹。巡防区域为40dm48dm。无人机巡逻时可覆盖地面8dm宽度区域。以缩短完成全覆盖巡逻时间为原则,无人机按照规划航线巡逻。发…...
篇二十二:解释器模式:处理语言语法
篇二十二:"解释器模式:处理语言语法" 开始本篇文章之前先推荐一个好用的学习工具,AIRIght,借助于AI助手工具,学习事半功倍。欢迎访问:http://airight.fun/。 另外有2本不错的关于设计模式的资料…...

【LeetCode 75】第二十一题(1207)独一无二的出现次数
目录 题目: 示例: 分析: 代码运行结果: 题目: 示例: 分析: 用两个unordered_map来分别存放每个数字的出现次数和出现的次数这个数,有点绕,比如说有给的数组有两个1,那么第一个map存放的是(1,2),表示1这个数子出现了两次,而第二个map存放的是(2,true),表示有出现次数为2的数…...
node中使用express+mongodb实现分页查询
文章目录 引言一、分页案例二、查询方法扩展介绍1. find()2. limit()3. skip()4. populate() 总结 引言 在Web应用程序开发中,分页查询是必不可少的功能之一。Node.js提供了许多优秀的工具和框架来实现分页查询,其中最流行的框架之一就是Express。同时&…...
信创优选,国产开源。Solon v2.4.2 发布
Solon 是什么开源项目? 一个,Java 新的生态型应用开发框架。它从零开始构建,有自己的标准规范与开放生态(历时五年,已有全球第二级别的生态规模)。与其他框架相比,它解决了两个重要的痛点&…...
Java HTTP client常见库
前言 每种编程语言里最常用的库恐怕是Http请求库了,如python里的requests包,nodejs里的request模块。 在Java世界里,也是百花齐放,山头林立。常用的有: HttpURLConnection: 最早的JDK提供的类Java 11提供的HttpClien…...

【Java基础教程】(四十四)IO篇 · 上:File类、字节流与字符流,分析字节输出流、字节输入流、字符输出流和字符输入流的区别~
Java基础教程之IO操作 上 🔹本节学习目标1️⃣ 文件操作类:File2️⃣ 字节流与字符流2.1 字节输出流:OutputStream2.2 字节输入流:InputStream2.3 字符输出流:Writer2.4 字符输入流:Reader2.5 字节流与字符…...

电商数据获取:网络爬虫还是付费数据接口?
随着电商行业的迅速发展,对电商数据的需求也越来越大。在获取电商数据时,常常面临一个选择:是自己编写网络爬虫进行数据爬取,还是使用现有的付费数据接口呢?本文将从成本、可靠性、数据质量等多个角度进行分析…...
树形结构——二叉树类型
本文主要介绍树形结构中的二叉树类型,包括二叉树、平衡二叉树、二叉查找树和完全二叉树; 1.二叉树 二叉树是一种树形结构,其中每个节点最多有两个子节点,通常称为左子节点和右子节点。二叉树具有以下特点: 每个节点…...
JavaScript对象的方法与原型链
在JavaScript中,对象是一种非常重要的数据类型,它允许我们将多个属性和方法组织在一起。对象的方法和原型链是理解JavaScript中面向对象编程的关键概念。本文将详细讲解对象的方法和原型链,用通俗易懂的方式帮助你深入理解这些概念。 1. 对象…...
Oracle入门初探---第一章 批量创建表、索引并插入测试数据
Oracle系列文章目录 第一章 批量创建表并插入测试数据 文章目录 Oracle系列文章目录前言一、创建表和索引二、向表中加入数据总结 前言 使用数据库,首先要向数据库中加入大量数据,本篇文章提供了一些测试数据 一、创建表和索引 -- 创建数据库和索引 -…...
全面讲解最小二乘法
常见的最小二乘法我们就不多说了,下面主要介绍一下最小二乘法的一些先进方法。 正则化的最小二乘法 在使用常见的最小二乘法进行回归分析时,常常会遇到过拟合的问题,也就是在训练数据集上表现的很好,但是在测试数据集上表现的很…...

【阻止IE强制跳转到Edge浏览器】
由于微软开始限制用户使用Internet Explorer浏览网站,IE浏览器打开一些网页时会自动跳转到新版Edge浏览器,那应该怎么禁止跳转呢? 1、点击电脑左下角的“搜索框”或者按一下windows键。 2、输入“internet”,点击【Internet选项…...
C++/Linux项目——日志系统(简介)
一,日志系统的目的 1.⽣产环境的产品为了保证其稳定性及安全性是不允许开发⼈员附加调试器去排查问题, 可以借助⽇志系统来打印⼀些⽇志帮助开发⼈员解决问题 2.上线客⼾端的产品出现bug⽆法复现并解决, 可以借助⽇志系统打印⽇志并上传到服…...
【Redis面试题整理一】
一、Redis定义 Redis 是一种基于内存的数据库,对数据的读写操作都是在内存中完成,读写速度非常快,被广泛应用于缓存方向。并且,Redis 存储的是 KV 键值对数据。 二、Redis为什么不存在并发竞争 对数据类型的操作都是原子性的&a…...
前端权限验证之自定义指令v-permission
自定义指令 在前端处理按钮权限详细代码 在前端处理按钮权限 使用vue自定义指令来v-permission 来控制按钮 详细代码 //index.js文件 import permission from ./permissionconst install function(Vue) {Vue.directive(permission, permission) }if (window.Vue) {window[p…...
c++使用条件变量实现生产消费问题(跨平台)
1. 生产者线程 思路:队列满了的情况下, 触发条件变量wait, 等待消费线程消费后唤醒继续生产. void ProducerThreadFunc() {while(1) { while(/* 容器已满 */) { /* 线程等待, 直到消费者消费后唤醒继续执行 */ }/* 生产动作 */ } }2. 消…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...

SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

水泥厂自动化升级利器:Devicenet转Modbus rtu协议转换网关
在水泥厂的生产流程中,工业自动化网关起着至关重要的作用,尤其是JH-DVN-RTU疆鸿智能Devicenet转Modbus rtu协议转换网关,为水泥厂实现高效生产与精准控制提供了有力支持。 水泥厂设备众多,其中不少设备采用Devicenet协议。Devicen…...

数据结构:递归的种类(Types of Recursion)
目录 尾递归(Tail Recursion) 什么是 Loop(循环)? 复杂度分析 头递归(Head Recursion) 树形递归(Tree Recursion) 线性递归(Linear Recursion)…...

从物理机到云原生:全面解析计算虚拟化技术的演进与应用
前言:我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM(Java Virtual Machine)让"一次编写,到处运行"成为可能。这个软件层面的虚拟化让我着迷,但直到后来接触VMware和Doc…...

一些实用的chrome扩展0x01
简介 浏览器扩展程序有助于自动化任务、查找隐藏的漏洞、隐藏自身痕迹。以下列出了一些必备扩展程序,无论是测试应用程序、搜寻漏洞还是收集情报,它们都能提升工作流程。 FoxyProxy 代理管理工具,此扩展简化了使用代理(如 Burp…...