ROS2学习(五)进程内topic高效通信
对ROS2有一定了解后,我们会发现ROS2中节点和ROS1中节点的概率有很大的区别。在ROS1中节点是最小的进程单元。在ROS2中节点与进程和线程的概念完全区分开了。具体区别可以参考 ROS2学习(四)进程,线程与节点的关系。
在ROS2中同一个进程中可能存在多个节点。两个节点直接交换数据依旧使用典型的topic发布订阅,则听起来像在一个房间的两个人,需要通过邮寄快递来交换物品一样。所以,ROS2中,设计了一种进程内通信的更好的方式。即intra processing.这个选项位于节点的选项中,即Node-Option,
- 使用进程内通信(use_intra_process_comms):类型是bool.如果为true,则在此上下文中发布和订阅的主题消息通过特殊的进程内通信代码路径。可以避免序列化和反序列化,不必要的复制。并在某些情况下实现更低的延迟。该选项默认值为false。
在构造节点时添加“使用进程内通信”选项,即可启用该功能。如下
Node(node_name, rclcpp::NodeOptions().use_intra_process_comms(true));
下面的例子是在一个进程中创建两个节点,都是用intra_process,包括一个发布器的节点,和一个订阅器的节点,二者都使用了节点的进程内通信,并通过unique指针打印了其中地址。每次通信的时候,二者消息指针的地址都是一致的,即消息没有通过UDP传输,而是通过直接读写内存区块传输的。
#include <cstdio>
#include <memory>
#include <string>
#include <utility>
#include "rclcpp/rclcpp.hpp"
#include <chrono>class PubNode : public rclcpp::Node
{public:explicit PubNode(const std::string& node_name):Node(node_name, rclcpp::NodeOptions().use_intra_process_comms(true)){using namespace std::chrono_literals;publisher_ = this->create_publisher<builtin_interfaces::msg::Time>("current_time",10);auto topictimer_callback =[&]()->void {builtin_interfaces::msg::Time::UniquePtr timestamp_ =std::make_unique<builtin_interfaces::msg::Time>(this->get_clock()->now());RCLCPP_INFO_STREAM(this->get_logger(), "pub:Addr is:" << reinterpret_cast<std::uintptr_t>(timestamp_.get()));publisher_->publish(std::move(timestamp_));};timer_ = this->create_wall_timer(std::chrono::milliseconds(500), topictimer_callback);}private:rclcpp::TimerBase::SharedPtr timer_;rclcpp::Publisher<builtin_interfaces::msg::Time>::SharedPtr publisher_;};class SubNode : public rclcpp::Node
{public:explicit SubNode(const std::string & node_name):Node(node_name, rclcpp::NodeOptions().use_intra_process_comms(true)){subscriber_ = this->create_subscription<builtin_interfaces::msg::Time>("current_time",10,std::bind(&SubNode::count_sub_callback, this, std::placeholders::_1));}private:rclcpp::Subscription<builtin_interfaces::msg::Time>::SharedPtr subscriber_;void count_sub_callback(const builtin_interfaces::msg::Time::UniquePtr msg){RCLCPP_INFO_STREAM(this->get_logger(), "sub::Addr is: " <<reinterpret_cast<std::uintptr_t>(msg.get()));}
};void another_executor()
{rclcpp::executors::SingleThreadedExecutor executor_;auto sub_node_ = std::make_shared<SubNode>("topic_sub");executor_.add_node(sub_node_);executor_.spin();
}int main(int argc, char ** argv)
{rclcpp::init(argc, argv);auto pub_node_ = std::make_shared<PubNode>("topic_pub");rclcpp::executors::SingleThreadedExecutor executor_;std::thread another(another_executor);executor_.add_node(pub_node_);executor_.spin();another.join();rclcpp::shutdown();return 0;
}
测试进程内通信:
crabe@crabe-virtual-machine:~/Desktop/ROS2_Sample/sample4$ ros2 run sample4 sample4
[INFO] [1691321973.618474226] [topic_pub]: pub:Addr is:94612283905568
[INFO] [1691321973.619805241] [topic_sub]: sub::Addr is: 94612283905568
[INFO] [1691321974.111633655] [topic_pub]: pub:Addr is:94612283906592
[INFO] [1691321974.112431228] [topic_sub]: sub::Addr is: 94612283906592
[INFO] [1691321974.621381952] [topic_pub]: pub:Addr is:94612283906752
[INFO] [1691321974.622338223] [topic_sub]: sub::Addr is: 94612283906752
[INFO] [1691321975.116415866] [topic_pub]: pub:Addr is:94612283906592
[INFO] [1691321975.117153538] [topic_sub]: sub::Addr is: 94612283906592
[INFO] [1691321975.626275913] [topic_pub]: pub:Addr is:94612283906752
[INFO] [1691321975.627212976] [topic_sub]: sub::Addr is: 94612283906752
[INFO] [1691321976.119609316] [topic_pub]: pub:Addr is:94612283906592
[INFO] [1691321976.119766941] [topic_sub]: sub::Addr is: 94612283906592
[INFO] [1691321976.612854241] [topic_pub]: pub:Addr is:94612283906752
[INFO] [1691321976.612988887] [topic_sub]: sub::Addr is: 94612283906752
[INFO] [1691321977.121834835] [topic_pub]: pub:Addr is:94612283906592
[INFO] [1691321977.122012812] [topic_sub]: sub::Addr is: 94612283906592
[INFO] [1691321977.615035889] [topic_pub]: pub:Addr is:94612283906752
[INFO] [1691321977.615166100] [topic_sub]: sub::Addr is: 94612283906752
[INFO] [1691321978.123765480] [topic_pub]: pub:Addr is:94612283906592
[INFO] [1691321978.123915765] [topic_sub]: sub::Addr is: 94612283906592
[INFO] [1691321978.615940232] [topic_pub]: pub:Addr is:94612283906752
[INFO] [1691321978.616072038] [topic_sub]: sub::Addr is: 94612283906752
intra_process与节点执行器无直接关系,仅与是否为同一进程有关。
使用intra_process的节点,其中的topic可以同时支持进程内和进程外的通信,只不过进程外的通信仍然使用UDP作为媒介。如果需要在进程外也使用共享内存的高效方案,则需要考虑在DDS的中间件上下功夫。
相关文章:
ROS2学习(五)进程内topic高效通信
对ROS2有一定了解后,我们会发现ROS2中节点和ROS1中节点的概率有很大的区别。在ROS1中节点是最小的进程单元。在ROS2中节点与进程和线程的概念完全区分开了。具体区别可以参考 ROS2学习(四)进程,线程与节点的关系。 在ROS2中同一个进程中可能存在多个节点…...
算法-最大数
给定一组非负整数 nums,重新排列每个数的顺序(每个数不可拆分)使之组成一个最大的整数。 注意:输出结果可能非常大,所以你需要返回一个字符串而不是整数。 输入:nums [10,2] 输出:"210&…...
Spark中使用RDD算子GroupBy做词频统计的方法
测试文件及环境 测试文件在本地D://tmp/spark.txt,Spark采用Local模式运行,Spark版本3.2.0,Scala版本2.12,集成idea开发环境。 hello world java world java java实验代码 import org.apache.spark.rdd.RDD import org.apache.…...
如何使用Kafka构建事件驱动的架构
事件驱动的架构(EDA)是一种软件设计模式,它关注事件的生成、检测和使用,以支持高效和可扩展的系统。在EDA中,事件是组件之间通信的主要手段,允许它们实时交互和响应更改。这种架构促进了松散耦合、可扩展性和响应性,使…...
ES6 解构赋值
解构赋值 解构赋值是一种在编程中常见且方便的语法特性,它可以让你从数组或对象中快速提取数据,并将数据赋值给变量。在许多编程语言中都有类似的特性。 在 JavaScript 中,解构赋值使得从数组或对象中提取数据变得简单。它可以用于数组和对…...
HTML5注册页面
分析 注册界面实际上是一个表格(对齐),一行有两个单元格。 代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevic…...
python中的JSON模块详解
简介 JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,它使得人们很容易的进行阅读和编写 同时也方便了机器进行解析和生成。适用于进行数据交互的场景,比如网站前台与后台之间的数据交互 网址 官方文档 json — JSON encoder and dec…...
Syncfusion Essential Edit for WPF Crack
Syncfusion Essential Edit for WPF Crack 在任何WPF应用程序中启用语法高亮显示。 Syncfusion Essential Edit for WPF是一款具有所有基本功能的编辑器,如文本编辑、剪切、复制和粘贴。它允许用户从各种文件格式打开文件并将其保存为各种文件格式。Syncfusion Esse…...
机器学习深度学习——卷积神经网络(LeNet)
👨🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习&&深度学习——池化层 📚订阅专栏:机器学习&&深度学习 希望文章对你们有所帮助 卷积神…...
Pytorch Tutorial【Chapter 2. Autograd】
Pytorch Tutorial 文章目录 Pytorch TutorialChapter 2. Autograd1. Review Matrix Calculus1.1 Definition向量对向量求导1.2 Definition标量对向量求导1.3 Definition标量对矩阵求导 2.关于autograd的说明3. grad的计算3.1 Manual手动计算3.2 backward()自动计算 Reference C…...
Python第三方库国内镜像下载地址
Python第三方库国内镜像下载地址 一、清华大学二、中国科技大学三、安装方法 一、清华大学 https://pypi.tuna.tsinghua.edu.cn/simple 二、中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple 三、安装方法 例如 pyhook3 插件的安装方法,执行下面命令安装…...
从浏览器输入url到页面加载(七)服务端机器一般部署在哪里
前言 上一节,我们说到了CDN和路由器的关系,说到了公有地址,说到了通信线路服务,这一节跳过那些看不懂的深层知识,直接开始说web服务器。 1. 服务端机器为什么不部署在公司内部 记得在之前的一段时间里,公…...
Pytorch深度学习-----神经网络之Sequential的详细使用及实战详解
系列文章目录 PyTorch深度学习——Anaconda和PyTorch安装 Pytorch深度学习-----数据模块Dataset类 Pytorch深度学习------TensorBoard的使用 Pytorch深度学习------Torchvision中Transforms的使用(ToTensor,Normalize,Resize ,Co…...
安全基础 --- https详解 + 数组(js)
CIA三属性:完整性(Confidentiality)、保密性(Integrity)、可用性(Availability),也称信息安全三要素。 https 核心技术:用非对称加密传输对称加密的密钥,然后…...
vue加载大量数据优化
在Vue中加载大量数据并形成列表时,可以通过以下方法来优化性能: 分页加载:不要一次性加载所有的数据,而是分批加载数据,每次只加载当前页需要显示的数据量。可以使用第三方库如vue-infinite-loading来实现无限滚动加载…...
WebRTC 之音视频同步
在网络视频会议中, 我们常会遇到音视频不同步的问题, 我们有一个专有名词 lip-sync 唇同步来描述这类问题,当我们看到人的嘴唇动作与听到的声音对不上的时候,不同步的问题就出现了 而在线会议中, 听见清晰的声音是优先…...
kubernetes基于helm部署gitlab-runner
kubernetes基于helm部署gitlab-runner 这篇博文介绍如何在 Kubernetes 中使用helm部署 GitLab-runner。 先决条件: 已运行的 Kubernetes 集群已运行的 gitlab 实例 项目地址:https://gitlab.com/gitlab-org/charts/gitlab-runner 官方文档ÿ…...
深度学习和OpenCV的对象检测(MobileNet SSD图像识别)
基于深度学习的对象检测时,我们主要分享以下三种主要的对象检测方法: Faster R-CNN(后期会来学习分享)你只看一次(YOLO,最新版本YOLO3,后期我们会分享)单发探测器(SSD,本节介绍,若你的电脑配置比较低,此方法比较适合R-CNN是使用深度学习进行物体检测的训练模型; 然而,…...
Gitlab CI/CD笔记-第一天-GitOps和以前的和jenkins的集成的区别
一、GitOps-CI/CD的流程图与Jenkins的流程图 从上图可以看到: GitOps与基于Jennkins技术栈的CI/CD流程,无法从Jenkins集成其他第三方开源的项目来实现换成了Gitlab来进行集成。 好处在于:CI 一个工具Gitlab就行了,但CD部分依旧是…...
有关OpenBSD, NetBSD, FreeBSD -- 与GPT对话
1 介绍一下 - OpenBSD, NetBSD, FreeBSD 当谈论操作系统时,OpenBSD、NetBSD和FreeBSD都是基于BSD(Berkeley Software Distribution)的操作系统,它们各自是独立开发的,并在BSD许可下发布。这些操作系统有很多共同点,但也有一些差异。以下是对它们的简要介绍: OpenBSD: O…...
STM32F4基本定时器使用和原理详解
STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...
智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
dify打造数据可视化图表
一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...
React---day11
14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...
SQL慢可能是触发了ring buffer
简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...
逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...
02.运算符
目录 什么是运算符 算术运算符 1.基本四则运算符 2.增量运算符 3.自增/自减运算符 关系运算符 逻辑运算符 &&:逻辑与 ||:逻辑或 !:逻辑非 短路求值 位运算符 按位与&: 按位或 | 按位取反~ …...
Qt的学习(一)
1.什么是Qt Qt特指用来进行桌面应用开发(电脑上写的程序)涉及到的一套技术Qt无法开发网页前端,也不能开发移动应用。 客户端开发的重要任务:编写和用户交互的界面。一般来说和用户交互的界面,有两种典型风格&…...
医疗AI模型可解释性编程研究:基于SHAP、LIME与Anchor
1 医疗树模型与可解释人工智能基础 医疗领域的人工智能应用正迅速从理论研究转向临床实践,在这一过程中,模型可解释性已成为确保AI系统被医疗专业人员接受和信任的关键因素。基于树模型的集成算法(如RandomForest、XGBoost、LightGBM)因其卓越的预测性能和相对良好的解释性…...
RushDB开源程序 是现代应用程序和 AI 的即时数据库。建立在 Neo4j 之上
一、软件介绍 文末提供程序和源码下载 RushDB 改变了您处理图形数据的方式 — 不需要 Schema,不需要复杂的查询,只需推送数据即可。 二、Key Features ✨ 主要特点 Instant Setup: Be productive in seconds, not days 即时设置 :在几秒钟…...
