当前位置: 首页 > news >正文

Matlab 最小二乘法拟合平面(SVD)

文章目录

  • 一、简介
    • 1.1最小二乘法拟合平面
    • 1.2 SVD角度
  • 二、实现代码
  • 三、实现效果
  • 参考资料

一、简介

1.1最小二乘法拟合平面

之前我们使用过最为经典的方式对平面进行了最小二乘拟合(点云最小二乘法拟合平面),其推导过程如下所示:

仔细观察一下可以发现

相关文章:

Matlab 最小二乘法拟合平面(SVD)

文章目录 一、简介1.1最小二乘法拟合平面1.2 SVD角度二、实现代码三、实现效果参考资料一、简介 1.1最小二乘法拟合平面 之前我们使用过最为经典的方式对平面进行了最小二乘拟合(点云最小二乘法拟合平面),其推导过程如下所示: 仔细观察一下可以发现...

AtCoder Regular Contest 126 D题题解

思路 首先我们看看假设选中 mmm 个数后的答案。 我们首先现将 mmm 个数移动到一起,在将他们重新排序。 我们知道,mmm 个数移在一起时,当位于中间的那个数不动时交换次数最少,于是可以列出式子(cic_ici​ 是点 iii 的…...

Android R WiFi热点流程浅析

Android R WiFi热点流程浅析 Android上的WiFi SoftAp功能是用户常用的功能之一,它能让我们分享手机的网络给其他设备使用。 那Android系统是如何实现SoftAp的呢,这里在FWK层面做一个简要的流程分析,供自己记录和大家参考。 以Android R版本为…...

【C++进阶】二、多态详解(总)

目录 一、多态的概念 二、多态的定义及实现 2.1 多态的构成条件 2.2 虚函数 2.3 虚函数的重写 2.4 虚函数重写的两个例外 2.4.1 协变 2.4.2 析构函数的重写 2.5 C11 override 和 final 2.5.1 final 2.5.2 override 2.6 重载、覆盖(重写)、隐藏(重定义)的对比 三、…...

node-sass@4.14.1 包含风险, 如何升级依赖至 dart-sass

文章目录需求我上网都查到了哪些信息在 github 看到了 node-sass 依赖的最新版本的列表:关于方案2的失败不同版本的 nodejs 和 node-sass依赖的**适配关系**从何得知替代方案——dart-sass如何安装 dart sass?需求 在做一个基于Node、React的前端项目&a…...

DataWhale 大数据处理技术组队学习task2

三、Hadoop分布式文件系统 1. 产生背景 数据量越来越大,一台独立的计算机已经无法存储所有的数据---->将大规模的数据存储到成百上千的计算机中------为了解决数据管理以及维护极其繁琐与低效------>分布式文件系统 分布式文件系统是管理网络中跨多台计算机…...

一文读懂select、poll、epoll的用法

select,poll,epoll都是IO多路复用的机制。I/O多路复用就通过一种机制,可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知程序进行相应的读写操作。但select,…...

《C陷阱与缺陷》----词法“陷阱”

导言: 由于一个程序错误可以从不同层面采用不同方式进行考察,而根据程序错误与考察程序的方式之间的相关性,可以将程序错误进行划分为各种陷阱与缺陷: ①.词法“陷阱” ②.语法“陷阱” ③.语义“陷阱” ④.连接问题 ⑤.库函数问…...

千锋教育+计算机四级网络-计算机网络学习-04

UDP概述 UDP协议 面向无连接的用户数据报协议,在传输数据前不需要先建立连接;目地主机的运输层收到UDP报文后,不需要给出任何确认 UDP特点 相比TCP速度稍快些简单的请求/应答应用程序可以使用UDP对于海量数据传输不应该使用UDP广播和多播应用…...

蓝桥杯算法训练合集十四 1.P08052.P07053.同余方程4.P08015.ascii应用

目录 1.P0805 2.P0705 3.同余方程 4.P0801 5.ascii应用 1.P0805 问题描述 当两个比较大的整数相乘时,可能会出现数据溢出的情形。为避免溢出,可以采用字符串的方法来实现两个大数之间的乘法。具体来说,首先以字符串的形式输入两个整数&…...

判断字符串中的字符的类型isdecimal();isalpha();isdigit();isalnum()

【小白从小学Python、C、Java】 【计算机等级考试500强双证书】 【Python-数据分析】 判断字符串中的字符的类型 isdecimal();isalpha();isdigit();isalnum() [太阳]选择题 对于代码中isdecimal()和isalnum()输出的结果是? s "ABc123&…...

VSCode远程调试Linux代码,python解释器配置

安装插件并配置 安装后找到插件图标,点击 点击SSH上的 号 在弹出框中输入命令:ssh usernameip -p port username: 远程服务器的用户名 ip: 远程ip port:端口号,没有可以不用 输入完毕后点击enter 选择ssh配置文件保存…...

03:入门篇 - CTK Plugin Framework 基本原理

作者: 一去、二三里 个人微信号: iwaleon 微信公众号: 高效程序员 CTK Plugin Framework 技术是面向 C++ 的动态模型系统。该系统允许插件之间的松散耦合,并且提供了设计良好的方式来进行功能和数据的交互。此外,它没有预先对插件施加限制,这样就可以很容易地将插件的相关…...

面试攻略,Java 基础面试 100 问(九)

数组有没有 length()方法?String 有没有 length()方法? 数组没有 length()方法,有 length 的属性。String 有 length()方法。JavaScript 中,获得字符串的长度是通过 length 属性得到的,这一点容易和 Java混淆。 在 Java 中&…...

JavaScript 代码不嵌套主义

文章目录前言一、何为嵌套代码二、避免嵌套1.提炼抽取2.反转排列总结前言 看过不少过度嵌套的代码, 我真正意识到问题的严重性是刚入职那会, 我在一个老项目里看到了40个连续的else if, 套了6层的if, for和forEach, 因为我们并没有做什么限制代码嵌套的提前约定. 呃, 那之后认…...

使用默认参数的4大要点

概述 默认参数是C中新增的特性。在C中,可以为函数的参数指定默认值。调用函数时,如果没有指定实参,则自动使用默认参数。默认参数的基本语法这里就不作介绍了,下面重点介绍使用默认参数的一些知识要点。 基本规则 1、当函数中某个…...

Linux文件系统中的硬链接及常见面试题

如果能对inode的概念有所了解,对理解本文会有所帮助。如果对inode的概念不太清楚也没有关系,我们会捎带介绍一下。在文件系统的实现层面,我们可以认为包含两个组件:一个是包含数据块的池子,池子中的数据块是等大小的&a…...

opencv-StereoBM算法

原理解释目前立体匹配算法是计算机视觉中的一个难点和热点,算法很多,但是一般的步骤是:A、匹配代价计算匹配代价计算是整个立体匹配算法的基础,实际是对不同视差下进行灰度相似性测量。常见的方法有灰度差的平方SD(squ…...

图像分类竞赛进阶技能:OpenAI-CLIP使用范例

OpenAI-CLIP 官方介绍 尽管深度学习已经彻底改变了计算机视觉,但目前的方法存在几个主要问题:典型的视觉数据集是劳动密集型的,创建成本高,同时只教授一组狭窄的视觉概念;标准视觉模型擅长于一项任务且仅擅长于一项任务,并且需要大…...

Metasploit框架基础(一)

文章目录前言一、基础认知二、批量POC/EXP的构想三、poc检测框架的简单实现四、xray五、Meatsploit框架参考前言 Metasploit 一款渗透测试框架漏洞利用的集合与构建和定制满足你的需求的基础漏洞利用和验证的工具 这几个说法都是百度或者官方文档中出现的手法,说…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)

在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...

如何在Windows本机安装Python并确保与Python.NET兼容

✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…...