当前位置: 首页 > news >正文

SAP 订单BOM与销售BOM的区别

订单BOM与销售BOM的区别
訂單BOM: 是實際生產時用的BOM, 在標準BOM和銷售BOM基礎上增減物料的BOM 銷售BOM: 是為特定客戶設定的BOM, 在主檔數據層次上的BOM, 在生產時是帶到訂單BOM中去的.
標準BOM: 是公司為標準生產的BOM, 在主檔數據層次上的BOM, 在生產時是帶到訂單BOM中去的. 
訂單BOM >= 銷售BOM >= 標準BOM 
一般使用中:
訂單BOM是在銷售BOM的基礎或標準BOM基礎上添加部分物料或減少或修改實際需求數量,
銷售BOM是在標準BOM基礎上增加特定客戶需要的BOM, 例如顏色,
標準BOM是公司在標準生產中使用的BOM, 通常由工程設計BOM產出再進行修正, 在SAP的標準成本計算是需要用到的.
工程設計BOM(應該很少公司用)是工程設計的BOM, 即將工程師畫的爆炸圖進行系統化. SAP還有幾種BOM. 
標準BOM維護: CS01/CS02/CS03, 查詢CS12 銷售BOM維護: CS61/CS62/CS63, 查詢CSK2 訂單BOM維護: CO01/CO02/CO03  
銷售BOM使用前提是產品必須是MAKE TO ORDER, 否則系統在展開BOM時只會拿標準BOM, 不會拿銷售BOM的數據. 
標準BOM的表: MAST 銷售BOM的表: KDST
訂單BOM的表: 沒有, 我的理解就是RESB中工單需求清單  
在MTO方式来说,才会产生销售订单BOM。业务部门根据客户要求,配置产生的成品特性,从而自动从标准的最大BOM中选择组件,生成销售订单BOM
这其中就明确了两个概念,销售订单BOM是在建立配置特性的基础上的,从最大化的标准BOM中选择相关特性限制的组件而产生的BOM。可以说,销售BOM是标准BOM的一个特例。这时候的标准BOM罗列了所有可能的配置。
订单BOM则是生产中使用的BOM,是MRP根据销售订单配置和标准BOM计算产生的BOM,订单BOM在下达生产之前,可以通过计划员的调整以及设置替代,更换组件或数量,而下达时依此生产的BOM。此BOM用于生产和发料,并是成本BOM的直接来源。

相关文章:

SAP 订单BOM与销售BOM的区别

订单BOM与销售BOM的区别 訂單BOM: 是實際生產時用的BOM, 在標準BOM和銷售BOM基礎上增減物料的BOM 銷售BOM: 是為特定客戶設定的BOM, 在主檔數據層次上的BOM, 在生產時是帶到訂單BOM中去的. 標準BOM: 是公司為標準生產的BOM, 在主檔數據層次上的BOM, 在生產時是帶到訂單BOM中去的…...

支付宝支付详细流程

1、二维码的生成二维码生成坐标 <!-- zxing生成二维码 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.3.3</version></dependency><dependency><groupId>co…...

TCP 的演化史-fast retransmit/recovery

工作原因要对一个 newreno 实现增加 sack 支持。尝试写了 3 天 C&#xff0c;同时一遍又一遍梳理 sack 标准演进。这些东西我早就了解&#xff0c;但涉及落地写实现&#xff0c;就得不断抠细节&#xff0c;试图写一个完备的实现。 这事有更简单的方法。根本没必要完全实现 RFC…...

CSS基础选择器,你认识多少?

前言在上一文初识CSS中&#xff0c;我们了解到了其格式&#xff1a;选择器{ }在初步尝试使用时&#xff0c;我们笼统的直接输入了p { }以选择p标签来对其操作&#xff0c;而这一章节里&#xff0c;我们再进一步探索有关基础选择器的相关内容&#xff0c;理解选择器的作用。选择…...

ChatGPT入门案例|商务智能对话客服(三)

本篇介绍智能客服的基本功能架构和基本概念&#xff0c;并利用对话流技术构建商务智能应用。 01、商务智能客服功能结构 互联网的发展已经深入到社会的各个方面&#xff0c;智能化发展已经成为社会发展的大趋势。在大数据和互联网时代&#xff0c;企业和组织愈加重视客户沟通…...

Matlab 最小二乘法拟合平面(SVD)

文章目录 一、简介1.1最小二乘法拟合平面1.2 SVD角度二、实现代码三、实现效果参考资料一、简介 1.1最小二乘法拟合平面 之前我们使用过最为经典的方式对平面进行了最小二乘拟合(点云最小二乘法拟合平面),其推导过程如下所示: 仔细观察一下可以发现...

AtCoder Regular Contest 126 D题题解

思路 首先我们看看假设选中 mmm 个数后的答案。 我们首先现将 mmm 个数移动到一起&#xff0c;在将他们重新排序。 我们知道&#xff0c;mmm 个数移在一起时&#xff0c;当位于中间的那个数不动时交换次数最少&#xff0c;于是可以列出式子&#xff08;cic_ici​ 是点 iii 的…...

Android R WiFi热点流程浅析

Android R WiFi热点流程浅析 Android上的WiFi SoftAp功能是用户常用的功能之一&#xff0c;它能让我们分享手机的网络给其他设备使用。 那Android系统是如何实现SoftAp的呢&#xff0c;这里在FWK层面做一个简要的流程分析&#xff0c;供自己记录和大家参考。 以Android R版本为…...

【C++进阶】二、多态详解(总)

目录 一、多态的概念 二、多态的定义及实现 2.1 多态的构成条件 2.2 虚函数 2.3 虚函数的重写 2.4 虚函数重写的两个例外 2.4.1 协变 2.4.2 析构函数的重写 2.5 C11 override 和 final 2.5.1 final 2.5.2 override 2.6 重载、覆盖(重写)、隐藏(重定义)的对比 三、…...

node-sass@4.14.1 包含风险, 如何升级依赖至 dart-sass

文章目录需求我上网都查到了哪些信息在 github 看到了 node-sass 依赖的最新版本的列表&#xff1a;关于方案2的失败不同版本的 nodejs 和 node-sass依赖的**适配关系**从何得知替代方案——dart-sass如何安装 dart sass&#xff1f;需求 在做一个基于Node、React的前端项目&a…...

DataWhale 大数据处理技术组队学习task2

三、Hadoop分布式文件系统 1. 产生背景 数据量越来越大&#xff0c;一台独立的计算机已经无法存储所有的数据---->将大规模的数据存储到成百上千的计算机中------为了解决数据管理以及维护极其繁琐与低效------>分布式文件系统 分布式文件系统是管理网络中跨多台计算机…...

一文读懂select、poll、epoll的用法

select&#xff0c;poll&#xff0c;epoll都是IO多路复用的机制。I/O多路复用就通过一种机制&#xff0c;可以监视多个描述符&#xff0c;一旦某个描述符就绪&#xff08;一般是读就绪或者写就绪&#xff09;&#xff0c;能够通知程序进行相应的读写操作。但select&#xff0c;…...

《C陷阱与缺陷》----词法“陷阱”

导言&#xff1a; 由于一个程序错误可以从不同层面采用不同方式进行考察&#xff0c;而根据程序错误与考察程序的方式之间的相关性&#xff0c;可以将程序错误进行划分为各种陷阱与缺陷&#xff1a; ①.词法“陷阱” ②.语法“陷阱” ③.语义“陷阱” ④.连接问题 ⑤.库函数问…...

千锋教育+计算机四级网络-计算机网络学习-04

UDP概述 UDP协议 面向无连接的用户数据报协议&#xff0c;在传输数据前不需要先建立连接&#xff1b;目地主机的运输层收到UDP报文后&#xff0c;不需要给出任何确认 UDP特点 相比TCP速度稍快些简单的请求/应答应用程序可以使用UDP对于海量数据传输不应该使用UDP广播和多播应用…...

蓝桥杯算法训练合集十四 1.P08052.P07053.同余方程4.P08015.ascii应用

目录 1.P0805 2.P0705 3.同余方程 4.P0801 5.ascii应用 1.P0805 问题描述 当两个比较大的整数相乘时&#xff0c;可能会出现数据溢出的情形。为避免溢出&#xff0c;可以采用字符串的方法来实现两个大数之间的乘法。具体来说&#xff0c;首先以字符串的形式输入两个整数&…...

判断字符串中的字符的类型isdecimal();isalpha();isdigit();isalnum()

【小白从小学Python、C、Java】 【计算机等级考试500强双证书】 【Python-数据分析】 判断字符串中的字符的类型 isdecimal()&#xff1b;isalpha()&#xff1b;isdigit()&#xff1b;isalnum() [太阳]选择题 对于代码中isdecimal()和isalnum()输出的结果是? s "ABc123&…...

VSCode远程调试Linux代码,python解释器配置

安装插件并配置 安装后找到插件图标&#xff0c;点击 点击SSH上的 号 在弹出框中输入命令&#xff1a;ssh usernameip -p port username: 远程服务器的用户名 ip&#xff1a; 远程ip port&#xff1a;端口号&#xff0c;没有可以不用 输入完毕后点击enter 选择ssh配置文件保存…...

03:入门篇 - CTK Plugin Framework 基本原理

作者: 一去、二三里 个人微信号: iwaleon 微信公众号: 高效程序员 CTK Plugin Framework 技术是面向 C++ 的动态模型系统。该系统允许插件之间的松散耦合,并且提供了设计良好的方式来进行功能和数据的交互。此外,它没有预先对插件施加限制,这样就可以很容易地将插件的相关…...

面试攻略,Java 基础面试 100 问(九)

数组有没有 length()方法?String 有没有 length()方法&#xff1f; 数组没有 length()方法&#xff0c;有 length 的属性。String 有 length()方法。JavaScript 中&#xff0c;获得字符串的长度是通过 length 属性得到的&#xff0c;这一点容易和 Java混淆。 在 Java 中&…...

JavaScript 代码不嵌套主义

文章目录前言一、何为嵌套代码二、避免嵌套1.提炼抽取2.反转排列总结前言 看过不少过度嵌套的代码, 我真正意识到问题的严重性是刚入职那会, 我在一个老项目里看到了40个连续的else if, 套了6层的if, for和forEach, 因为我们并没有做什么限制代码嵌套的提前约定. 呃, 那之后认…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年&#xff0c;截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始&#xff0c;将英文题库免费公布出来&#xff0c;并进行解析&#xff0c;帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

蓝桥杯 冶炼金属

原题目链接 &#x1f527; 冶炼金属转换率推测题解 &#x1f4dc; 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V&#xff0c;是一个正整数&#xff0c;表示每 V V V 个普通金属 O O O 可以冶炼出 …...

Unity中的transform.up

2025年6月8日&#xff0c;周日下午 在Unity中&#xff0c;transform.up是Transform组件的一个属性&#xff0c;表示游戏对象在世界空间中的“上”方向&#xff08;Y轴正方向&#xff09;&#xff0c;且会随对象旋转动态变化。以下是关键点解析&#xff1a; 基本定义 transfor…...

《Docker》架构

文章目录 架构模式单机架构应用数据分离架构应用服务器集群架构读写分离/主从分离架构冷热分离架构垂直分库架构微服务架构容器编排架构什么是容器&#xff0c;docker&#xff0c;镜像&#xff0c;k8s 架构模式 单机架构 单机架构其实就是应用服务器和单机服务器都部署在同一…...

前端调试HTTP状态码

1xx&#xff08;信息类状态码&#xff09; 这类状态码表示临时响应&#xff0c;需要客户端继续处理请求。 100 Continue 服务器已收到请求的初始部分&#xff0c;客户端应继续发送剩余部分。 2xx&#xff08;成功类状态码&#xff09; 表示请求已成功被服务器接收、理解并处…...

归并排序:分治思想的高效排序

目录 基本原理 流程图解 实现方法 递归实现 非递归实现 演示过程 时间复杂度 基本原理 归并排序(Merge Sort)是一种基于分治思想的排序算法&#xff0c;由约翰冯诺伊曼在1945年提出。其核心思想包括&#xff1a; 分割(Divide)&#xff1a;将待排序数组递归地分成两个子…...

第22节 Node.js JXcore 打包

Node.js是一个开放源代码、跨平台的、用于服务器端和网络应用的运行环境。 JXcore是一个支持多线程的 Node.js 发行版本&#xff0c;基本不需要对你现有的代码做任何改动就可以直接线程安全地以多线程运行。 本文主要介绍JXcore的打包功能。 JXcore 安装 下载JXcore安装包&a…...