当前位置: 首页 > news >正文

做好“关键基础设施提供商”角色,亚马逊云科技加快生成式AI落地

一场关于生产力的革命已在酝酿之中。全球管理咨询公司麦肯锡在最近的报告《生成式人工智能的经济潜力:下一波生产力浪潮》中指出,生成式AI每年可能为全球经济增加2.6万亿到4.4万亿美元的价值。在几天前的亚马逊云科技纽约峰会中,「生成式AI」同样是全场提及频率最高的关键词。

「如今,大模型可以在大量无标注数据中进行预训练,实现开箱即用,以处理各种通用性问题。此外,只需相对少量的标注数据进行微调,它们就能用于特定领域的应用。」亚马逊云科技数据库、数据分析和机器学习全球副总裁Swami Sivasubramanian表示,「通过微调轻松定制预训练模型的能力,绝对是游戏规则的改变。」

一场关于生产力的革命已在酝酿之中。全球管理咨询公司麦肯锡在最近的报告《生成式人工智能的经济潜力:下一波生产力浪潮》中指出,生成式AI每年可能为全球经济增加2.6万亿到4.4万亿美元的价值。在几天前的亚马逊云科技纽约峰会中,「生成式AI」同样是全场提及频率最高的关键词。

「如今,大模型可以在大量无标注数据中进行预训练,实现开箱即用,以处理各种通用性问题。此外,只需相对少量的标注数据进行微调,它们就能用于特定领域的应用。」亚马逊云科技数据库、数据分析和机器学习全球副总裁Swami Sivasubramanian表示,「通过微调轻松定制预训练模型的能力,绝对是游戏规则的改变。」

206ccfb5938647bd9266dbfd7fe1c3b1.png

 

凭借过去数年的客户需求洞察和技术积累,亚马逊云科技将大量的AI能力集成到了简单易用的产品之中,希望以最简洁的方式将技术进步输送到各行各业。在这场技术盛会上,亚马逊云科技一口气推出了七项生成式AI新功能。

 

最强的生成式AI大模型,在这里轻松调用

今年4月,亚马逊云科技发布了全托管基础模型服务「Amazon Bedrock」,以「关键基础设施提供商」的角色加入了大模型之战。

 

从希望应用大模型的企业角度来说,自研大模型需要数十亿美元和多年的训练,更优的解决方案是对一些已经非常强大的开源基础模型进行定制化的微调,以满足自身的多样化业务需求。Amazon Bedrock的重要价值就在于此。这项服务可以让所有人都可以基于已有的大模型、专用的AI算力和工具,再结合自己的数据开始构建生成式AI应用。

在最新扩展后的Amazon Bedrock中,汇聚了来自一批顶级大模型供应商的最新成果:

 

目前,Amazon Bedrock提供了Anthropic最新语言模型Claude 2、AI21的JURASSIC-2、亚马逊自研的Amazon Titan系列模型的访问。Stability AI也在Amazon Bedrock中首发了最新版的文生图模型套件Stable Diffusion XL 1.0。此外,Cohere成为了最新加入Amazon Bedrock的基础模型供应商,并带来了文本生成模型Command和文本理解模型EMBED。

相比于其他的一站式的大模型服务平台,Amazon Bedrock的优势在于,用户可将其与亚马逊云科技平台的其余部分集成在一起,更轻松地访问存储在Amazon S3对象存储服务中的数据,并能够从亚马逊云科技访问控制和治理策略中受益。

生成式AI让云计算服务的竞争格局发生了改变,除了原有的存储、计算、网络等基础设施,模型、框架和应用层面的能力提供变得更为重要。在过去一段时间,我们见到了「模型即服务」这种全新商业的诞生。如同Amazon Bedrock这样的一系列平台,正在将大模型变为直接可用的服务,帮助各行各业的用户接入生成式AI,撬动了一个全新的蓝海市场。

 

推动生成式AI走完落地的「最后一公里」

在今天,即使生成式AI模型的功能已经如此强大,它们仍然无法代替人类「执行」一部分关键的、个性化的任务。这恰恰是「生成式AI」转化为「生产力」过程中非常关键的一步。

问题并非不能解决:模型通常可以附加API、插件、数据库以扩展功能,为用户自动完成某些特定的任务。比如ChatGPT此前就推出了插件机制,还为开发者提供了开放平台,允许更多用户根据自己的需求、想法和专业能力进行扩展。为了简化这一环节所需的工作,亚马逊云科技正式推出了Amazon Bedrock Agents。

 

Amazon Bedrock Agents可以扩展基础模型以理解用户请求,将复杂任务分解为多个步骤,开展对话以收集更多信息,并采取行动来满足用户请求。开发者只需点击几下,就能创建完全托管的Agents:

该功能创建的对话式智能体可根据专有数据提供个性化的最新答案并执行操作,帮助企业加速交付生成式AI应用程序,推动解决生成式AI落地的「最后一公里」问题。比如,企业可以使用Amazon Bedrock Agents创建一个可以处理订单的客户服务聊天机器人,利用其内部信息(包括客户资料和退货政策)来定制化服务于每个订单。

如果做个比喻的话,Amazon Bedrock Agents就像是一个得力的助手。或许在不久的将来,我们就能享受这一功能所提供的用户端服务:不只是显示有哪些合适的航班、推荐口碑好的餐厅,还能直接帮忙预订、跟进。

 

生成式AI时代的搜索技术变革

在解决大模型落地挑战的火热讨论中,「向量搜索」和「向量数据库」的概念开始被越来越多的人熟知。这是检索技术层面在生成式AI时代正在发生的变革。

首先,伴随数据规模的增长,关键词检索已经不能满足需求,向量检索可作对传统搜索技术的补充。通过将数据表示为向量,模型可以快速分析和理解大量信息,准确地识别和匹配相似的项目。

其次,经过预训练的大模型固然能力出众,但也存在一些不足,比如缺乏领域知识、缺乏长期记忆、缺乏事实一致性的问题。而在数据规模不断增长、算力日益珍贵的现状下,向量数据库可作为大模型的「超级大脑」,打一份小抄,相对较低的成本补充动态知识,满足用户不断增长的需求。

 

对于这一方向,亚马逊云科技早早发力,此前已上线多项支持向量的数据存储服务,包括Amazon Aurora PostgreSQL兼容版关系型数据库,兼容PostgreSQL的Amazon RDS(Amazon Relational Database Service)关系型数据库等。

在这一次的峰会上,亚马逊云科技又推出了适用于Amazon OpenSearch Serverless的向量引擎。该向量引擎支持简单的API调用,可用于存储和查询数十亿个Embeddings。

 

该引擎由Amazon OpenSearch项目中的k最近邻(kNN)搜索功能提供支持,为客户提供无服务器环境下的语义搜索服务。即使向量从原型设计期间的几千个增长到数亿甚至更多,引擎也能无缝扩展,无需重新索引或重新加载数据来扩展基础设施。

顺应大模型时代的广泛需求,亚马逊云科技还正式宣布,平台上所有的数据库未来都将具有向量功能,帮助客户简化运营,方便集成数据。

 

让生成式AI落地多重加速

在这些重磅发布之外,为了加速生成式AI的训练和应用,亚马逊云科技已推出了一系列服务和工具。

最新动态是,两项关键服务已正式可用:其中一项服务是关于计算基础设施,基于英伟达H100 Tensor Core GPU的Amazon EC2 P5实例已正式可用,满足客户在运行工作负载时对高性能和高扩展性的需求。

 

很多业界知名的生成式AI模型同时涵盖问题回复、代码生成、视频和图像生成、语音识别等功能,规模通常有千亿或万亿参数,训练时间甚至长达数月。这势必会成为普遍影响生成式AI落地速度的因素之一。

与上一代基于GPU的实例相比,Amazon EC2 P5实例使得训练最高提速6倍,曾经的几天训练时间可缩短到几小时,帮助客户降低高达40%的训练成本。

另外一项服务是有关于开发工具。去年,亚马逊云科技推出了AI编程助手Amazon CodeWhisperer预览版,获得了开发者的高度关注。数据表明,与未使用该编程助手的开发者相比,使用者完成任务的速度平均快57%。现在,Amazon CodeWhisperer已经正式可用,并且实现了与Amazon Glue的集成。

从此以后,开发者可以用自然语言编写特定任务,Amazon CodeWhispere会直接在Amazon Glue Notebooks中推荐一个或多个可完成此任务的代码片段,用户可以选择「接受最推荐的建议」、「查看更多建议」或「继续自己编写代码」。也就是说,即使完全不会写代码,你也可以尝试用「说人话」的方法构建出完整的应用程序。

 

 

写在最后

技术的发展往往超乎人们的预设。曾几何时,研究者们还需要花费数月的时间进行数据准备、数据处理和模型训练,不得不投入极其高昂的成本,只为了完成某一项特定的任务。

在这场浪潮中,亚马逊云科技选择的路线是做好「关键基础设施提供商」的工作。它的优势在于过去20年在人工智能技术上的深厚积累,在于对于超过10万家客户的深刻理解,在于打磨多年的高可用、强大的基础设施。这些都会有力地推动亚马逊云科技加快生成式AI落地的征程,帮助到每一位开发者或创业团队。

凭借过去数年的客户需求洞察和技术积累,亚马逊云科技将大量的AI能力集成到了简单易用的产品之中,希望以最简洁的方式将技术进步输送到各行各业。在这场技术盛会上,亚马逊云科技一口气推出了七项生成式AI新功能。

 

最强的生成式AI大模型,在这里轻松调用

今年4月,亚马逊云科技发布了全托管基础模型服务「Amazon Bedrock」,以「关键基础设施提供商」的角色加入了大模型之战。

 

从希望应用大模型的企业角度来说,自研大模型需要数十亿美元和多年的训练,更优的解决方案是对一些已经非常强大的开源基础模型进行定制化的微调,以满足自身的多样化业务需求。Amazon Bedrock的重要价值就在于此。这项服务可以让所有人都可以基于已有的大模型、专用的AI算力和工具,再结合自己的数据开始构建生成式AI应用。

在最新扩展后的Amazon Bedrock中,汇聚了来自一批顶级大模型供应商的最新成果:

 

目前,Amazon Bedrock提供了Anthropic最新语言模型Claude 2、AI21的JURASSIC-2、亚马逊自研的Amazon Titan系列模型的访问。Stability AI也在Amazon Bedrock中首发了最新版的文生图模型套件Stable Diffusion XL 1.0。此外,Cohere成为了最新加入Amazon Bedrock的基础模型供应商,并带来了文本生成模型Command和文本理解模型EMBED。

相比于其他的一站式的大模型服务平台,Amazon Bedrock的优势在于,用户可将其与亚马逊云科技平台的其余部分集成在一起,更轻松地访问存储在Amazon S3对象存储服务中的数据,并能够从亚马逊云科技访问控制和治理策略中受益。

生成式AI让云计算服务的竞争格局发生了改变,除了原有的存储、计算、网络等基础设施,模型、框架和应用层面的能力提供变得更为重要。在过去一段时间,我们见到了「模型即服务」这种全新商业的诞生。如同Amazon Bedrock这样的一系列平台,正在将大模型变为直接可用的服务,帮助各行各业的用户接入生成式AI,撬动了一个全新的蓝海市场。

 

推动生成式AI走完落地的「最后一公里」

在今天,即使生成式AI模型的功能已经如此强大,它们仍然无法代替人类「执行」一部分关键的、个性化的任务。这恰恰是「生成式AI」转化为「生产力」过程中非常关键的一步。

问题并非不能解决:模型通常可以附加API、插件、数据库以扩展功能,为用户自动完成某些特定的任务。比如ChatGPT此前就推出了插件机制,还为开发者提供了开放平台,允许更多用户根据自己的需求、想法和专业能力进行扩展。为了简化这一环节所需的工作,亚马逊云科技正式推出了Amazon Bedrock Agents。

 

Amazon Bedrock Agents可以扩展基础模型以理解用户请求,将复杂任务分解为多个步骤,开展对话以收集更多信息,并采取行动来满足用户请求。开发者只需点击几下,就能创建完全托管的Agents:

该功能创建的对话式智能体可根据专有数据提供个性化的最新答案并执行操作,帮助企业加速交付生成式AI应用程序,推动解决生成式AI落地的「最后一公里」问题。比如,企业可以使用Amazon Bedrock Agents创建一个可以处理订单的客户服务聊天机器人,利用其内部信息(包括客户资料和退货政策)来定制化服务于每个订单。

如果做个比喻的话,Amazon Bedrock Agents就像是一个得力的助手。或许在不久的将来,我们就能享受这一功能所提供的用户端服务:不只是显示有哪些合适的航班、推荐口碑好的餐厅,还能直接帮忙预订、跟进。

 

生成式AI时代的搜索技术变革

在解决大模型落地挑战的火热讨论中,「向量搜索」和「向量数据库」的概念开始被越来越多的人熟知。这是检索技术层面在生成式AI时代正在发生的变革。

首先,伴随数据规模的增长,关键词检索已经不能满足需求,向量检索可作对传统搜索技术的补充。通过将数据表示为向量,模型可以快速分析和理解大量信息,准确地识别和匹配相似的项目。

其次,经过预训练的大模型固然能力出众,但也存在一些不足,比如缺乏领域知识、缺乏长期记忆、缺乏事实一致性的问题。而在数据规模不断增长、算力日益珍贵的现状下,向量数据库可作为大模型的「超级大脑」,打一份小抄,相对较低的成本补充动态知识,满足用户不断增长的需求。

 

对于这一方向,亚马逊云科技早早发力,此前已上线多项支持向量的数据存储服务,包括Amazon Aurora PostgreSQL兼容版关系型数据库,兼容PostgreSQL的Amazon RDS(Amazon Relational Database Service)关系型数据库等。

在这一次的峰会上,亚马逊云科技又推出了适用于Amazon OpenSearch Serverless的向量引擎。该向量引擎支持简单的API调用,可用于存储和查询数十亿个Embeddings。

 

该引擎由Amazon OpenSearch项目中的k最近邻(kNN)搜索功能提供支持,为客户提供无服务器环境下的语义搜索服务。即使向量从原型设计期间的几千个增长到数亿甚至更多,引擎也能无缝扩展,无需重新索引或重新加载数据来扩展基础设施。

顺应大模型时代的广泛需求,亚马逊云科技还正式宣布,平台上所有的数据库未来都将具有向量功能,帮助客户简化运营,方便集成数据。

 

让生成式AI落地多重加速

在这些重磅发布之外,为了加速生成式AI的训练和应用,亚马逊云科技已推出了一系列服务和工具。

最新动态是,两项关键服务已正式可用:其中一项服务是关于计算基础设施,基于英伟达H100 Tensor Core GPU的Amazon EC2 P5实例已正式可用,满足客户在运行工作负载时对高性能和高扩展性的需求。

 

很多业界知名的生成式AI模型同时涵盖问题回复、代码生成、视频和图像生成、语音识别等功能,规模通常有千亿或万亿参数,训练时间甚至长达数月。这势必会成为普遍影响生成式AI落地速度的因素之一。

与上一代基于GPU的实例相比,Amazon EC2 P5实例使得训练最高提速6倍,曾经的几天训练时间可缩短到几小时,帮助客户降低高达40%的训练成本。

另外一项服务是有关于开发工具。去年,亚马逊云科技推出了AI编程助手Amazon CodeWhisperer预览版,获得了开发者的高度关注。数据表明,与未使用该编程助手的开发者相比,使用者完成任务的速度平均快57%。现在,Amazon CodeWhisperer已经正式可用,并且实现了与Amazon Glue的集成。

从此以后,开发者可以用自然语言编写特定任务,Amazon CodeWhispere会直接在Amazon Glue Notebooks中推荐一个或多个可完成此任务的代码片段,用户可以选择「接受最推荐的建议」、「查看更多建议」或「继续自己编写代码」。也就是说,即使完全不会写代码,你也可以尝试用「说人话」的方法构建出完整的应用程序。

 

 

写在最后

技术的发展往往超乎人们的预设。曾几何时,研究者们还需要花费数月的时间进行数据准备、数据处理和模型训练,不得不投入极其高昂的成本,只为了完成某一项特定的任务。

在这场浪潮中,亚马逊云科技选择的路线是做好「关键基础设施提供商」的工作。它的优势在于过去20年在人工智能技术上的深厚积累,在于对于超过10万家客户的深刻理解,在于打磨多年的高可用、强大的基础设施。这些都会有力地推动亚马逊云科技加快生成式AI落地的征程,帮助到每一位开发者或创业团队。

 

相关文章:

做好“关键基础设施提供商”角色,亚马逊云科技加快生成式AI落地

一场关于生产力的革命已在酝酿之中。全球管理咨询公司麦肯锡在最近的报告《生成式人工智能的经济潜力:下一波生产力浪潮》中指出,生成式AI每年可能为全球经济增加2.6万亿到4.4万亿美元的价值。在几天前的亚马逊云科技纽约峰会中,「生成式AI」…...

如何使用 ChatGPT 规划家居装修

你正在计划家庭装修项目,但不确定从哪里开始?ChatGPT 随时为你提供帮助。从集思广益的设计理念到估算成本,ChatGPT 可以简化你的家居装修规划流程。在本文中,我们将讨论如何使用 ChatGPT 有效地规划家居装修,以便你的项…...

题解 | #1002.Random Nim Game# 2023杭电暑期多校7

1002.Random Nim Game 诈骗博弈题 题目大意 Nim是一种双人数学策略游戏,玩家轮流从不同的堆中移除棋子。在每一轮游戏中,玩家必须至少取出一个棋子,并且可以取出任意数量的棋子,条件是这些棋子都来自同一个棋子堆。走最后一步棋…...

篇九:组合模式:树形结构的力量

篇九:“组合模式:树形结构的力量” 开始本篇文章之前先推荐一个好用的学习工具,AIRIght,借助于AI助手工具,学习事半功倍。欢迎访问:http://airight.fun/。 另外有2本不错的关于设计模式的资料&#xff0c…...

【注册表】windows系统注册表常用修改方案

文章目录 ◆ 修改IE浏览器打印页面参数设置◆气泡屏幕保护◆彩带屏幕保护程序◆过滤IP(适用于WIN2000)◆禁止显示IE的地址栏◆禁止更改IE默认的检查(winnt适用)◆允许DHCP(winnt适用)◆局域网自动断开的时间(winnt适用)◆禁止使用“重置WEB设置”◆禁止更…...

ant-design-vue 4.x升级问题-样式丢失问题

[vue] ant-design-vue 4.x升级问题-样式丢失问题 项目环境问题场景解决方案 该文档是在升级ant-design-vue到4.x版本的时候遇到的问题 项目环境 "vue": "^3.3.4", "ant-design-vue": "^4.0.0", "vite": "^4.4.4&quo…...

【果树农药喷洒机器人】Part3:变量喷药系统工作原理介绍

本专栏介绍:免费专栏,持续更新机器人实战项目,欢迎各位订阅关注。 关注我,带你了解更多关于机器人、嵌入式、人工智能等方面的优质文章! 文章目录 一、变量喷药系统工作原理二、液压通路设计与控制系统封装2.1液压通路…...

GoogLeNet创新点总结

GoogLeNet是一种深度卷积神经网络架构,于2014年由Google团队提出,是ILSVRC(ImageNet Large Scale Visual Recognition Challenge)比赛的冠军模型,其创新点主要集中在以下几个方面:   Inception模块&#…...

不同路径1、2、3合集(980. 不同路径 III)

不同路径一 矩形格,左上角 到 右下角。 class Solution {int [] directX new int[]{-1,1,0,0};int [] directY new int[]{0,0,-1,1};int rows;int cols;public int uniquePathsIII(int[][] grid) {if (grid null || grid.length 0 || grid[0].length 0) {ret…...

【云原生】Yaml文件详解

目录 一、YAML 语法格式1.1查看 api 资源版本标签1.2 写一个yaml文件demo1.3 详解k8s中的port 一、YAML 语法格式 Kubernetes 支持 YAML 和 JSON 格式管理资源对象JSON 格式:主要用于 api 接口之间消息的传递YAML格式:用于配置和管理,YAML 是…...

ffmpeg下载安装教程

ffmpeg官网下载地址https://ffmpeg.org/download.html 这里以windows为例,鼠标悬浮到windows图标上,再点击 Windows builds from gyan.dev 或者直接打开 https://www.gyan.dev/ffmpeg/builds/ 下载根据个人需要下载对应版本 解压下载的文件,并复制bin所在目录 新打开一个命令…...

uniapp之当你问起“tab方法触发时eventchange也跟着触发了咋办”时

我相信没有大佬会在这个问题上卡两个小时吧,记下来大家就当看个乐子了。 当时问题就是,点击tab头切换的时候,作为tab滑动事件的eventchange同时触发了,使得接口请求了两次 大概是没睡好,我当时脑子老想着怎么阻止它冒…...

TS 踩坑之路(四)之 Vue3

一、在使用定义默认值withDefaults和defineProps 组合时,默认值设置报错 代码案例 报错信息 不能将类型“{ isBackBtn: false; }”分配给类型“(props: PropsType) > RouteMsgType”。 对象字面量只能指定已知属性,并且“isBackBtn”不在类型“(pro…...

【音视频】edge与chrome在性能上的比较

目录 结论先说 实验 结论 实验机器的cpu配置 用EDGE拉九路​编辑 google拉五路就拉不出来了 资源使用情况 edge报错​编辑 如果服务器端 性能也满 了,就会不回复;验证方式 手动敲 8081,不回应。 结论先说 实验 用chrome先拉九路&#…...

Docker Compose编排部署LNMP服务

目录 安装docker-ce 阿里云镜像加速器 文件 启动 安装docker-ce [rootlocalhost ~]# wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7.repo --2023-08-03 18:34:32-- http://mirrors.aliyun.com/repo/Centos-7.repo 正在解析主机 m…...

git使用(常见用法)

一.下载git git官方下载跳转 安装简单,有手就行 二. git的简单使用 1. 连接远程仓库 #初始化 git init #配置账户 git config --global user.name “输入你的用户名” git config --global user.email “输入你的邮箱” git config --list #--q退出 #配置验证邮箱 ssh-key…...

用例拆分情况考虑方案

文章目录 1、方案一方案概述方案分析(1) 把对应图商地图的逻辑给分离开(2) 要使用命令行的方式执行方法 2、方案二3、最终决定 1、方案一 方案概述 每个图商(GD、BD、自建)拆分成单独的类 把参数化的几个图商类别拆分成对应的图商类,在每个类…...

一文搞懂IS-IS报文通用格式

报文格式 IS-IS报文是直接封装在数据链路层的帧结构中的。PDU可以分为两个部分,报文头和变长字段部分。其中头部又可分为通用头部和专用头部。对于所有PDU来说,通用报头都是相同的,但专用报头根据PDU类型不同而有所差别。 IS-IS的PDU有4种类…...

位置参数 关键字参数

在Python中,函数参数可以按照位置或关键字来传递。这导致了两种主要的参数类型:位置参数和关键字参数。 位置参数: 这是最常见的参数类型,当我们调用函数时,传递给函数的参数值是按照它们的位置来确定的。例如,def fun…...

【果树农药喷洒机器人】Part5:基于深度相机与分割掩膜的果树冠层体积探测方法

文章目录 一、引言二、树冠体积测量对比方法2.1冠层体积人工测量法2.2冠层体积拟合测量法 三、基于深度相机与分割掩膜探测树冠体积方法3.1像素值与深度值的转换3.2树冠体积视觉探测法3.3实验分析 总结 一、引言 果树靶标探测是实现农药精准喷施的关键环节,本章以果…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

九天毕昇深度学习平台 | 如何安装库?

pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子&#xff1a; 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称&#xff1a;Apache Flink REST API 任意文件读取漏洞CVE编号&#xff1a;CVE-2020-17519CVSS评分&#xff1a;7.5影响版本&#xff1a;Apache Flink 1.11.0、1.11.1、1.11.2修复版本&#xff1a;≥ 1.11.3 或 ≥ 1.12.0漏洞类型&#xff1a;路径遍历&#x…...

日常一水C

多态 言简意赅&#xff1a;就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过&#xff0c;当子类和父类的函数名相同时&#xff0c;会隐藏父类的同名函数转而调用子类的同名函数&#xff0c;如果要调用父类的同名函数&#xff0c;那么就需要对父类进行引用&#…...

FFmpeg avformat_open_input函数分析

函数内部的总体流程如下&#xff1a; avformat_open_input 精简后的代码如下&#xff1a; int avformat_open_input(AVFormatContext **ps, const char *filename,ff_const59 AVInputFormat *fmt, AVDictionary **options) {AVFormatContext *s *ps;int i, ret 0;AVDictio…...

xmind转换为markdown

文章目录 解锁思维导图新姿势&#xff1a;将XMind转为结构化Markdown 一、认识Xmind结构二、核心转换流程详解1.解压XMind文件&#xff08;ZIP处理&#xff09;2.解析JSON数据结构3&#xff1a;递归转换树形结构4&#xff1a;Markdown层级生成逻辑 三、完整代码 解锁思维导图新…...

aardio 自动识别验证码输入

技术尝试 上周在发学习日志时有网友提议“在网页上识别验证码”&#xff0c;于是尝试整合图像识别与网页自动化技术&#xff0c;完成了这套模拟登录流程。核心思路是&#xff1a;截图验证码→OCR识别→自动填充表单→提交并验证结果。 代码在这里 import soImage; import we…...

LangChain【6】之输出解析器:结构化LLM响应的关键工具

文章目录 一 LangChain输出解析器概述1.1 什么是输出解析器&#xff1f;1.2 主要功能与工作原理1.3 常用解析器类型 二 主要输出解析器类型2.1 Pydantic/Json输出解析器2.2 结构化输出解析器2.3 列表解析器2.4 日期解析器2.5 Json输出解析器2.6 xml输出解析器 三 高级使用技巧3…...

高端性能封装正在突破性能壁垒,其芯片集成技术助力人工智能革命。

2024 年&#xff0c;高端封装市场规模为 80 亿美元&#xff0c;预计到 2030 年将超过 280 亿美元&#xff0c;2024-2030 年复合年增长率为 23%。 细分到各个终端市场&#xff0c;最大的高端性能封装市场是“电信和基础设施”&#xff0c;2024 年该市场创造了超过 67% 的收入。…...