解决Error running XXXApplicationCommand line is too long.报错
测试IDEA版本:2019.2.4 ,2020.1.3
文章目录
- 一. 问题场景
- 二. 报错原因
- 2.1 为什么命令行过长会导致这种问题?
- 三. 解决方案
- 3.1 方案一
- 3.2 方案二

一. 问题场景
当我们从GitHub或公司自己搭建的git仓库上拉取项目代码时,会出现以下错误

报错代码如下所示:
Error running "YxOaDataApplication": Command line is too long. Shorten command line for Yx0aDataApplication or also for Spring Boot default confiquration
二. 报错原因
该问题是由于命令行过长导致的`
2.1 为什么命令行过长会导致这种问题?
这是由于操作系统对命令行长度有一定的限制所导致的。而不同的操作系统和环境可能对命令行的长度具有不同的限制。
命令行的长度限制是为了确保操作系统能够正确解析和执行命令行参数。当命令行超过系统所定义的最大长度限制时,操作系统会报告命令行过长的错误。
以下是导致命令行过长的一些常见原因:
参数过多:如果在命令行中传递了大量的参数,例如文件路径、选项或标志等,将增加命令行的长度长路径:使用较长的文件路径、目录路径或包含多级嵌套的路径也会导致命令行变得很长大量依赖项:如果应用程序依赖于许多库、模块或插件,并且这些依赖项需要通过命令行参数传递给应用程序,那么命令行长度可能会增加配置项过多:某些应用程序可能具有大量的配置选项,这些选项需要通过命令行进行传递,从而增加了命令行的长度
三. 解决方案
以本地项目中ServiceStatisticsApplication的启动配置项为例
3.1 方案一
步骤:
①定位到项目中报错的启动配置项(xxxApplication),点击其下拉图标 ”v“ —> ”Edit Condiguration“

②在Run/Debug configuration界面中,点击 “Configuration” --> “Environment” --> “Shorten command line” --> 选择 “JAR manifest” 或 “classpath file”,目的是为了缩短命令行

③重启项目中该报错的模块即可
缺点
如果项目中其他模块发生了该问题,还需要对发生问题的模块的启动项配置做以上的设置,即下个问题模块的启动配置项需要单独设置。
3.2 方案二
步骤:
在项目的.idea/workspace.xml文件中,找到
<component name="PropertiesComponent">,后面在添加一行<property name="dynamic.classpath" value="true" />
代码示例如下:
<property name="dynamic.classpath" value="true" />

优势
这种解决方案一次设置就行,不必再为项目中每个模块的启动配置项中单独设置
相关文章:
解决Error running XXXApplicationCommand line is too long.报错
测试IDEA版本:2019.2.4 ,2020.1.3 文章目录 一. 问题场景二. 报错原因2.1 为什么命令行过长会导致这种问题? 三. 解决方案3.1 方案一3.2 方案二 一. 问题场景 当我们从GitHub或公司自己搭建的git仓库上拉取项目代码时,会出现以下错误 报错代…...
【Linux】—— 进程等待 waitwaitpid
序言: 之前讲过,子进程退出,父进程如果不管不顾,就可能造成‘僵尸进程’的问题,进而造成内存泄漏。因此,为了解决这个问题,就需要用到有关 “进程等待” 的基本知识!!&am…...
el-tree 懒加载数据,增删改时局部刷新实现
1.数据过多时进行懒加载孩子节点,根据层级传参获取后端孩子数据 懒加载主要部分: 1参数: :load"loadNode" lazy :props"defaultProps" 2.defaultProps 需要设置isLeaf: isLeaf,去除最后一层孩子节点的展开图表 defaultProps: { ch…...
opencv基础44- Canny边缘检测详解-cv.Canny()
什么是Canny边缘检测? Canny边缘检测是一种经典的边缘检测算法,由John F. Canny在1986年提出。它被广泛应用于计算机视觉和图像处理领域,是一种多阶段的边缘检测算法,能够有效地检测图像中的边缘并抑制噪声。 Canny边缘检测的主要…...
neo4j查询语言Cypher详解(三)--函数
函数 Cypher中的函数如果输入参数为null,则返回null。 以字符串作为输入的函数都对Unicode字符进行操作,而不是对标准字符进行操作。例如,size()函数应用于任何Unicode字符将返回1,即使该字符不适合一个字符的16位。 可以通过 …...
kafka权威指南(阅读摘录)
零复制 Kafka 使用零复制技术向客户端发送消息——也就是说,Kafka 直接把消息从文件(或者更确切地说是 Linux 文件系统缓存)里发送到网络通道,而不需要经过任何中间缓冲区。这是 Kafka 与其他大部分数据库系统不一样的地方&#…...
【爬虫实践】使用Python从网站抓取数据
一、说明 本周我不得不为客户抓取一个网站。我意识到我做得如此自然和迅速,分享它会很有用,这样你也可以掌握这门艺术。【免责声明:本文展示了我的抓取做法,如果您有更多相关做法请在评论中分享】 二、计划策略 2.1 策划 确定您…...
win10 2022unity设置中文
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言解决方法 前言 在Edit->preferences里找不到language选项。 解决方法 【1】打开下面地址 注意 :把{version}换成你当前安装的版本,比如说如果…...
python表白代码大全可复制,python表白代码大全简单
大家好,小编来为大家解答以下问题,python表白代码大全可复制,python表白程序代码完整版,现在让我们一起来看看吧! 今天是20230520,有人说:5代表的是人生五味,酸甜苦辣咸;…...
wordpress 打开缓慢处理
gravatar.com 头像网站被墙 追踪发现请求头像时长为21秒 解决方案一 不推荐,容易失效,网址要是要稳定为主,宁愿头像显示异常,也不能网址打不开 网上大部分搜索到的替换的CDN网址都过期了,例如:gravatar.du…...
Adobe ColdFusion 反序列化漏洞复现(CVE-2023-29300)
0x01 产品简介 Adobe ColdFusion是美国奥多比(Adobe)公司的一套快速应用程序开发平台。该平台包括集成开发环境和脚本语言。 0x02 漏洞概述 Adobe ColdFusion存在代码问题漏洞,该漏洞源于受到不受信任数据反序列化漏洞的影响,攻击…...
林【2018】
关键字: BST插入叶子结点、ADT结伴操作、队列插入前r-1、哈希函数二次探测法(1,-1,4,-4)、队列元素个数、折半查找失败次数、广义表链表结构、B-树构建、单链表指定位置插入数组元素 一、判断 二、单选 h(49)+1,-1,+4,-4...
ffmpeg+nginx实现rtsp协议摄像头web端播放
ffmpegnginx实现rtsp协议摄像头web端播放 环境准备准备nginx环境添加rtmp模块添加hls转发 使用ffmpeg,将摄像头rtsp转为rtmp并推送到nginxVLC播放验证 环境准备 nginx(需要安装rtmp模块)ffmpeg 6.0vlc播放器(本地播放验证&#x…...
【周赛第69期】满分题解 软件工程选择题 枚举 dfs
目录 选择题1.2.3.4.面向对象设计七大原则 编程题S数最小H值 昨晚没睡好,脑子不清醒,痛失第1名 选择题 1. 关于工程效能,以下哪个选项可以帮助提高团队的开发效率? A、频繁地进行代码审查 B、使用自动化测试工具 C、使用版本控…...
P2015 二叉苹果树
P2015 二叉苹果树 类似于带限制背包问题,但不知道也能做。 n , q n,q n,q 范围小,大胆设 dp 状态。设 f u , i \large f_{u,i} fu,i 表示 u u u 子树内保留 i i i 根树枝的最大苹果数,可得状态转移方程 f u , i f u , j f v , i − …...
Linux 内核音频数据传递主要流程
Linux 用户空间应用程序通过声卡驱动程序(一般牵涉到多个设备驱动程序)和 Linux 内核 ALSA 框架导出的 PCM 设备文件,如 /dev/snd/pcmC0D0c 和 /dev/snd/pcmC0D0p 等,与 Linux 内核音频设备驱动程序和音频硬件进行数据传递。PCM 设…...
torch.device函数
torch.device 是 PyTorch 中用于表示计算设备(如CPU或GPU)的类。它允许你在代码中指定你希望在哪个设备上执行张量和模型操作,本文主要介绍了 torch.device 函数的用法和功能。 本文主要包含以下内容: 1.创建设备对象2.将张量和模…...
火车头采集器AI伪原创【php源码】
大家好,本文将围绕python作业提交什么文件展开说明,python123怎么提交作业是一个很多人都想弄明白的事情,想搞清楚python期末作业程序需要先了解以下几个事情。 火车头采集ai伪原创插件截图: I have a python project, whose fold…...
Python中常见的6种数据类型
数字(Numbers):数字类型用于表示数值,包括整数(int)和浮点数(float)。 字符串(Strings):字符串类型用于表示文本,由一系列字符组成。字…...
消息队列项目(2)
我们使用 SQLite 来进行对 Exchange, Queue, Binding 的硬盘保存 对 Message 就保存在硬盘的文本中 SQLite 封装 这里是在 application.yaml 中来引进对 SQLite 的封装 spring:datasource:url: jdbc:sqlite:./data/meta.dbusername:password:driver-class-name: org.sqlite.…...
观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
html-<abbr> 缩写或首字母缩略词
定义与作用 <abbr> 标签用于表示缩写或首字母缩略词,它可以帮助用户更好地理解缩写的含义,尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时,会显示一个提示框。 示例&#x…...
C++使用 new 来创建动态数组
问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
