pytorch零基础实现语义分割项目(一)——数据概况及预处理
语义分割之数据加载
- 项目列表
- 前言
- 数据集
- 概况
- 数据组织形式
- 数据集划分
- 数据预处理
- 均值与方差
- 结尾
项目列表
语义分割项目(一)——数据概况及预处理
语义分割项目(二)——标签转换与数据加载
语义分割项目(三)——语义分割模型(U-net和deeplavb3+)
前言
在本专栏的上一个项目中我们介绍了使用CNN进行图像分类,在本项目中我们将介绍另外一种对于图像进行处理的算法——语义分割
数据集
概况
我们这次使用的是来自kaggle的数据集
数据集地址:Semantic segmentation of aerial imagery
如果kaggle无法下载可以选择通过CSDN下载,已经设置了0积分可以下载
下载地址:用于语义分割的航拍数据集
他的类别信息如下:

数据的组织形式如下


这里我们随便拿一张图片和分割后的结果做对比,可以看到,语义分割的目的就是将不同类别的区域分割出来


数据组织形式
由于数据的标签使用的16进制,为了方便,我们提前将16进制转换为rgb格式的标签形式,我们在下面直接列出像素点的颜色信息以及其对应的标签信息以备后续使用
VOC_COLORMAP = [[226, 169, 41], [132, 41, 246], [110, 193, 228], [60, 16, 152], [254, 221, 58], [155, 155, 155]]
VOC_CLASSES = ['Water', 'Land (unpaved area)', 'Road', 'Building', 'Vegetation', 'Unlabeled']
除此之外我们还可以看到数据集的组织形式似乎对于模型的训练有些不友好,因为我们想得到一个通用的数据加载和训练的代码,所以综合考虑来看我们选择提前处理数据而不是更改数据的加载部分的代码
def semantic2dataset():mark = 0path = 'Semantic segmentation dataset'if not os.path.exists('dataset'):os.mkdir('dataset')if not os.path.exists(os.path.join('dataset', 'images')):os.mkdir(os.path.join('dataset', 'images'))if not os.path.exists(os.path.join('dataset', 'labels')):os.mkdir(os.path.join('dataset', 'labels'))for i in range(1, 9):file = os.path.join(path, 'Tile {}'.format(i))images = os.path.join(file, 'images')masks = os.path.join(file, 'masks')for image, label in zip(os.listdir(images), os.listdir(masks)):shutil.copyfile(os.path.join(images, image), os.path.join('dataset', 'images', '{:03d}.jpg'.format(mark)))shutil.copyfile(os.path.join(masks, label), os.path.join('dataset', 'labels', '{:03d}.png'.format(mark)))mark += 1semantic2dataset()
我们通过os包新建文件夹,并且遍历原数据集的图片和标签,并将它们复制到我们新建的目录下,移动后的组织形式如下:
在dataset文件夹下只有images和labels两个文件夹

打开这两个文件夹我们可以看到图像和标签


数据集划分
我们首先要先划分训练集和测试集,代码很简单,依次读出数据的路径,并将路径写入到txt文件即可
def trainValSplit(path):length = len(os.listdir(os.path.join(path, 'images')))idx = [i for i in range(length)]shuffle(idx)with open(os.path.join(path, 'train.txt'), 'w') as f:for d in idx[:int(length * 0.8)]:f.write(str(d))f.write("\n")with open(os.path.join(path, 'test.txt'), 'w') as f:for d in idx[int(length * 0.8):]:f.write(str(d))f.write("\n")trainValSplit('./dataset')
txt文件中的内容如下

数据预处理
均值与方差
我们通过下面的函数可以获得数据集图像每个通道的均值和方差,我们只需要执行一次即可,得出的均值和方差将会作为先验数据为后续数据集加载过程中对于数据进行transforms处理的参数
def getMeanStd(path):length = len(os.listdir(path))means = torch.zeros(3)stds = torch.zeros(3)for name in os.listdir(path):img = io.read_image(os.path.join(path, name)).type(torch.float32) / 255for i in range(3):means[i] += img[i, :, :].mean()stds[i] += img[i, :, :].std()print(means.div_(length), stds.div_(length), length)getMeanStd('./dataset/images')

结尾
在本篇文章中,我们介绍了我们这个项目中用于进行语义分割的数据集的概况,以及针对其组织形式和数据上的预处理,下一篇我们将着重讲解数据集的加载
相关文章:
pytorch零基础实现语义分割项目(一)——数据概况及预处理
语义分割之数据加载项目列表前言数据集概况数据组织形式数据集划分数据预处理均值与方差结尾项目列表 语义分割项目(一)——数据概况及预处理 语义分割项目(二)——标签转换与数据加载 语义分割项目(三)…...
ARM+LINUX嵌入式学习路线
嵌入式学习是一个循序渐进的过程,如果是希望向嵌入式软件方向发展的话,目前最常见的是嵌入式Linux方向,关注这个方向,大概分3个阶段: 1、嵌入式linux上层应用,包括QT的GUI开发 2、嵌入式linux系统开发 3、…...
echart在微信小程序的使用
echart在微信小程序的使用 echarts不显示在微信小程序 <!-- 微信小程序的echart的使用 --> <view class"container"><ec-canvas id"mychart-dom-bar" canvas-id"mychart-bar" ec"{{ ec }}"></ec-canvas> &l…...
51单片机最强模块化封装(5)
文章目录 前言一、创建timer文件,添加timer文件路径二、timer文件编写三、模块化测试总结前言 今天这篇文章将为大家封装定时器模块,定时器是工程项目中必不可少的,希望大家能够将定时器理解清楚并且运用自如。 一、创建timer文件,添加timer文件路径 这里的操作就不过多…...
链表学习之判断链表是否回文
链表解题技巧 额外的数据结构(哈希表);快慢指针;虚拟头节点; 判断链表是否回文 要求:时间辅助度O(N),空间复杂度O(1) 方法1:栈(不考虑空间复杂度) 遍历一…...
【Linux06-基础IO】4.5万字的基础IO讲解
前言 本期分享基础IO的知识,主要有: 复习C语言文件操作文件相关的系统调用文件描述符fd理解Linux下一切皆文件缓冲区文件系统软硬链接动静态库的理解和制作动静态编译 博主水平有限,不足之处望请斧正! C语言文件操作 #再谈文件…...
c++协程库理解—ucontext组件实践
文章目录1.干货写在前面2.ucontext初接触3.ucontext组件到底是什么4.小试牛刀-使用ucontext组件实现线程切换5.使用ucontext实现自己的线程库6.最后一步-使用我们自己的协程库1.干货写在前面 协程是一种用户态的轻量级线程 首先我们可以看看有哪些语言已经具备协程语义&#x…...
英语基础-状语
1. 课前引语 1. 形容词使用场景 (1). 放在系动词后面作表语 The boy is handsome. (2). 放在名词前面做定语 I like this beautiful girl. (3). 放在宾语后面做补语 You make your father happy. 总结:形容词无论做什么,都离不开名词,…...
目标检测笔记(八):自适应缩放技术Letterbox完整代码和结果展示
文章目录自适应缩放技术Letterbox介绍自适应缩放技术Letterbox流程自适应缩放Letterbox代码运行结果自适应缩放技术Letterbox介绍 由于数据集中存在多种不同和长宽比的样本图,传统的图片缩放方法按照固定尺寸来进行缩放会造成图片扭曲变形的问题。自适应缩放技术通…...
2023年全国最新高校辅导员精选真题及答案1
百分百题库提供高校辅导员考试试题、辅导员考试预测题、高校辅导员考试真题、辅导员证考试题库等,提供在线做题刷题,在线模拟考试,助你考试轻松过关。 一、选择题 11.李某与方某签订房屋租赁合同期间,李某欲购买租赁房屋ÿ…...
【Python】Python读写Excel表格
简要版,更多功能参考资料1。1 Excel文件保存格式基础概念此处不提,详见资料1。Excel的文件保存格式有两种: xls 和 xlsx。如果你看不到文件后缀,按下图设置可见。xls是Office 2003及之前版本的表格的默认保存格式。xlsx 是 Excel …...
Python每日一练(20230218)
目录 1. 旋转图像 2. 解码方法 3. 二叉树最大路径和 1. 旋转图像 给定一个 n n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。 你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像…...
基于SSM框架的狼途汽车门店管理系统的设计与实现
基于SSM框架的狼途汽车门店管理系统的设计与实现 ✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取项目下载方式🍅 一、…...
视频监控流程图3
<html> <head> <meta http-equiv"Content-Type" content"text/html; charsetUTF-8"/> <link rel"stylesheet" type"text/css" href"visio.css"/> <title> 视频监控流程图 </title> <…...
Linux ARM平台开发系列讲解(CAN) 2.14.3 CANFD协议介绍
1. 概述 前面章节介绍了CAN2.0协议,CAN现在主要是用在汽车领域,随着CAN的发展, 又衍生除了CANFD协议,该协议是在CAN的基础之上进行了升级,CAN2.0的最高速率是1Mbps,有限的速率导致CAN总线上负载率变高,所以CANFD就出现了,CANFD目前最高支持10Mbps。除此之外,CANFD还拥…...
参考 | 给C盘 “搬家“
参考 | 给C盘 “搬家” 将在C盘准备 “搬家” 的 文件/文件夹 完整路径 copy 下来 e.g. 路径一 “C:\Users\你的用户名\AppData\Roaming\kingsoft” 将这个 文件/文件夹 CTRLX 剪切下来 注意: 剪切后, 不需要自己重新新建, 直接执行第三步 将这个 文件/文件夹 CTRLV 粘贴到你要…...
剑指 Offer 53 - II. 0~n-1中缺失的数字
原题链接 难度:easy\color{Green}{easy}easy 题目描述 一个长度为n-1的递增排序数组中的所有数字都是唯一的,并且每个数字都在范围0~n-1之内。在范围0~n-1内的n个数字中有且只有一个数字不在该数组中,请找出这个数字…...
分布式id
一、分布式系统 1.1 分布式系统的定义和应用场景 分布式系统是由多个独立的计算机节点协同工作,以共同完成一个任务的系统。这些节点通过网络进行通信和协调,共享计算和存储资源,从而实现对更大规模问题的处理和更高系统可用性的要求。 分…...
创意编程py模拟题
前言:好久没写博客了,来水好好写一篇 注:本篇文章为py,不是c 1、敲七 版本1 题目: 题目描述 输出7和7的倍数,还有包含7的数字例如(17,27,37…70,71&#…...
uniapp中条件编译
官方:https://uniapp.dcloud.net.cn/tutorial/platform.html#%E8%B7%A8%E7%AB%AF%E5%85%BC%E5%AE%B9 #ifndef H5 代码段… #endif 表示除了H5其他都可以编译 #ifdef H5 代码段… #endef 表示只能编译H5,其他的都不能编译 其他编译平台请查看官方文档。 …...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
遍历 Map 类型集合的方法汇总
1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...
Day131 | 灵神 | 回溯算法 | 子集型 子集
Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
论文笔记——相干体技术在裂缝预测中的应用研究
目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...
Python Ovito统计金刚石结构数量
大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...
Qemu arm操作系统开发环境
使用qemu虚拟arm硬件比较合适。 步骤如下: 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载,下载地址:https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...
