用Python获取链家二手房房源数据,做可视化图分析数据
前言
数据采集的步骤是固定:
- 发送请求, 模拟浏览器对于url地址发送请求
- 获取数据, 获取网页数据内容 --> 请求那个链接地址, 返回服务器响应数据
- 解析数据, 提取我们需要的数据内容
- 保存数据, 保存本地文件
所需模块
win + R 输入cmd 输入安装命令 pip install 模块名 (如果你觉得安装速度比较慢, 你可以切换国内镜像源)
# 数据请求模块 第三方模块 需要安装 pip install requests
import requests
# 数据解析模块 第三方模块 需要安装 pip install parsel
import parsel
# 导入csv模块 内置模块 不需要安装
import csv # 固定模板
# 导入pandas模块
import pandas as pd
二手房源数据获取
请求数据
# 模拟浏览器
headers = {# 用户代理 表示浏览器基本身份信息'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/115.0.0.0 Safari/537.36'
}
# 请求链接
url = 'https://cs.lianjia.com/ershoufang/'
# 发送请求
response = requests.get(url=url, headers=headers)
# 输出内容 <Response [200]> 响应对象 表示请求成功
print(response)

解析数据
我们这次选用css选择器: 根据标签属性提取数据内容
- 获取所有房源所在li标签
selector = parsel.Selector(response.text) # 选择器对象
# 获取所有房源所在li标签
lis = selector.css('.sellListContent li .info')
- for循环遍历
for li in lis:title = li.css('.title a::text').get() # 标题area_info = li.css('.positionInfo a::text').getall() # 区域信息area_1 = area_info[0] # 小区area_2 = area_info[1] # 区域totalPrice = li.css('.totalPrice span::text').get() # 总价unitPrice = li.css('.unitPrice span::text').get().replace('元/平', '') # 单价houseInfo = li.css('.houseInfo::text').get().split(' | ') # 房源信息HouseType = houseInfo[0] # 户型HouseArea = houseInfo[1].replace('平米', '') # 面积HouseFace = houseInfo[2] # 朝向HouseInfo_1 = houseInfo[3] # 装修fool = houseInfo[4] # 楼层HouseInfo_2 = houseInfo[-1] # 建筑结构href = li.css('.title a::attr(href)').get() # 详情页dit = {'标题': title,'小区': area_1,'区域': area_2,'总价': totalPrice,'单价': unitPrice,'户型': HouseType,'面积': HouseArea,'朝向': HouseFace,'装修': HouseInfo_1,'楼层': fool,'年份': date,'建筑结构': HouseInfo_2,'详情页': href,}print(dit)

保存数据
f = open('二手房.csv', mode='w', encoding='utf-8', newline='')
csv_writer = csv.DictWriter(f, fieldnames=['标题','小区','区域','总价','单价','户型','面积','朝向','装修','楼层','年份','建筑结构','详情页',
])
csv_writer.writeheader()

接下来就是数据可视化
二手房源户型分布
from pyecharts import options as opts
from pyecharts.charts import Pie
from pyecharts.faker import Fakerc = (Pie().add("",[list(z)for z in zip(house_type, house_num)],center=["40%", "50%"],).set_global_opts(title_opts=opts.TitleOpts(title="二手房源户型分布"),legend_opts=opts.LegendOpts(type_="scroll", pos_left="80%", orient="vertical"),).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
# .render("pie_scroll_legend.html")
)
c.load_javascript()

二手房源朝向分布
face_type = df['朝向'].value_counts().index.to_list()
face_num = df['朝向'].value_counts().to_list()
c = (Pie().add("",[list(z)for z in zip(face_type, face_num)],center=["40%", "50%"],).set_global_opts(title_opts=opts.TitleOpts(title="二手房源朝向分布"),legend_opts=opts.LegendOpts(type_="scroll", pos_left="80%", orient="vertical"),).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
# .render("pie_scroll_legend.html")
)
c.render_notebook()

二手房源装修分布
face_type = df['装修'].value_counts().index.to_list()
face_num = df['装修'].value_counts().to_list()
c = (Pie().add("",[list(z)for z in zip(face_type, face_num)],center=["40%", "50%"],).set_global_opts(title_opts=opts.TitleOpts(title="二手房源装修分布"),legend_opts=opts.LegendOpts(type_="scroll", pos_left="80%", orient="vertical"),).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
# .render("pie_scroll_legend.html")
)
c.render_notebook()

二手房源年份分布
face_type = df['年份'].value_counts().index.to_list()
face_num = df['年份'].value_counts().to_list()
c = (Pie().add("",[list(z)for z in zip(face_type, face_num)],center=["40%", "50%"],).set_global_opts(title_opts=opts.TitleOpts(title="二手房源年份分布"),legend_opts=opts.LegendOpts(type_="scroll", pos_left="80%", orient="vertical"),).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
# .render("pie_scroll_legend.html")
)
c.render_notebook()

二手房源建筑结构分布
face_type = df['建筑结构'].value_counts().index.to_list()
face_num = df['建筑结构'].value_counts().to_list()
c = (Pie().add("",[list(z)for z in zip(face_type, face_num)],center=["40%", "50%"],).set_global_opts(title_opts=opts.TitleOpts(title="二手房源建筑结构分布"),legend_opts=opts.LegendOpts(type_="scroll", pos_left="80%", orient="vertical"),).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
# .render("pie_scroll_legend.html")
)
c.render_notebook()

各大区域房价平均价
avg_salary = df.groupby('区域')['总价'].mean()
CityType = avg_salary.index.tolist()
CityNum = [int(a) for a in avg_salary.values.tolist()]
from pyecharts.charts import Bar
# 创建柱状图实例
c = (Bar().add_xaxis(CityType).add_yaxis("", CityNum).set_global_opts(title_opts=opts.TitleOpts(title="各大区域房价平均价"),visualmap_opts=opts.VisualMapOpts(dimension=1,pos_right="5%",max_=30,is_inverse=True,),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45)) # 设置X轴标签旋转角度为45度).set_series_opts(label_opts=opts.LabelOpts(is_show=False),markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="min", name="最小值"),opts.MarkLineItem(type_="max", name="最大值"),opts.MarkLineItem(type_="average", name="平均值"),]),)
)c.render_notebook()

各大区域房价单价平均价格
import pandas as pd
from pyecharts.charts import Bar
import pyecharts.options as opts# 清理数据并将'单价'列转换为整数类型
df['单价'] = df['单价'].str.replace(',', '').astype(int)# 计算平均价
avg_salary = df.groupby('区域')['单价'].mean()# 获取城市类型和城市平均价格
CityType = avg_salary.index.tolist()
CityNum = [int(a) for a in avg_salary.values.tolist()]# 创建柱状图实例
c = (Bar().add_xaxis(CityType).add_yaxis("", CityNum).set_global_opts(title_opts=opts.TitleOpts(title="各大区域房价单价平均价格"),visualmap_opts=opts.VisualMapOpts(dimension=1,pos_right="5%",max_=30,is_inverse=True,),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45)) # 设置X轴标签旋转角度为45度).set_series_opts(label_opts=opts.LabelOpts(is_show=False),markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="min", name="最小值"),opts.MarkLineItem(type_="max", name="最大值"),opts.MarkLineItem(type_="average", name="平均值"),]),)
)# 在Notebook中显示柱状图
c.render_notebook()

适合练手的25个Python案例源码分享,总有一个你想要的
👇问题解答 · 源码获取 · 技术交流 · 抱团学习请联系👇
相关文章:
用Python获取链家二手房房源数据,做可视化图分析数据
前言 数据采集的步骤是固定: 发送请求, 模拟浏览器对于url地址发送请求获取数据, 获取网页数据内容 --> 请求那个链接地址, 返回服务器响应数据解析数据, 提取我们需要的数据内容保存数据, 保存本地文件 所需模块 win R 输入cmd 输入安装命令 pip install 模块名 (如果你…...
Yield Guild Games:社区更新 — 2023 年第二季度
本文重点介绍了 Yield Guild Games (YGG) 2023 年第二季度社区更新中涵盖的关键主题,包括公会发展计划 (GAP) 第 3 季的总结、YGG 领导团队的新成员以及 YGG 的最新消息地区公会网络和广泛的游戏合作伙伴生态系统。 在 YGG 品牌焕然一新的基础上,第二季…...
Stable Diffusion - 运动服 (Gymwear Leggings) 风格服装与背景的 LoRA 配置
欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/132179050 测试模型:DreamShaper 8 运动裤 (Gymwear Leggings) 是紧身的裤子,通常用于健身、瑜伽、跑步等运动。运动裤的…...
js-7:javascript原型、原型链及其特点
1、原型 JavaScript常被描述为一种基于原型的语言-每个对象拥有一个原型对象。 当试图访问一个对象的属性时,它不仅仅在该对象上搜寻,还会搜寻该对象的原型,以及该对象的原型的原型,依次层层向上搜索,直到找到一个名字…...
无涯教程-Perl - continue 语句函数
可以在 while 和 foreach 循环中使用continue语句。 continue - 语法 带有 while 循环的 continue 语句的语法如下- while(condition) {statement(s); } continue {statement(s); } 具有 foreach 循环的 continue 语句的语法如下- foreach $a (listA) {statement(s); } co…...
【贪心算法】leetcode刷题
贪心算法无固定套路。 核心思想:先找局部最优,再扩展到全局最优。 455.分发饼干 两种思路: 1、从大到小。局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩。先遍历的胃口&a…...
PyMySQL库版本引起的python执行sql编码错误
前言 长话短说,之前在A主机(centos7.9)上运行的py脚本拿到B主机上(centos7.9)运行报错: UnicodeEncodeError: latin-1 codec cant encode characters in position 265-266: ordinal not in range(256)两个…...
第二章-算法
第二章-算法 数据结构和算法的关系 算法是解决特定问题求解步骤的描述,在计算机中表现为指令的有限序列,并且每条指令表示一个或多个操作。 算法的特性 算法有五个基本特征:输入、输出、有穷性、确定性和可行性。 输入:算法具…...
‘vue’不是内部或外部命令,也不是可运行的程序或批处理文件的原因及解决方法
今天我在用node.js的时候,结果出现如下错误: C:\Users\xiesj> vue -v vue不是内部或外部命令,也不是可运行的程序或批处理文件。 原因: 1、确定npm是否已正确安装? 2、确定vue以及vue-cli已正确安装?…...
HBase API
我们之后的实际开发中不可能在服务器那边直接使用shell命令一直敲的,一般都是通过API进行操作的。 环境准备 新建Maven项目,导入Maven依赖 <dependencies><dependency><groupId>org.apache.hbase</groupId><artifactId>…...
Qt6之QListWidget——Qt仿ToDesk侧边栏(1)
一、 QLitWidget概述 注意:本文不是简单翻译Qt文档或者接口函数,而侧重于无代码Qt设计器下演示使用。 QListWidget也称列表框类,它提供了一个类似于QListView提供的列表视图,但是它具有一个用于添加和删除项的经典的基于项的接口…...
Prometheus技术文档--基本安装-docker安装并挂载数据卷-《十分钟搭建》
一、查看可安装的版本 docker search prom/prometheus 二、拉取镜像 docker pull prom/prometheus 三、查看镜像 docker images 四、书写配置文件-以及创建挂载目录 宿主机挂载目录位置: 以及准备对应的挂载目录: /usr/local/docker/promethues/se…...
Android 数据库之GreenDAO
GreenDAO 是一款开源的面向 Android 的轻便、快捷的 ORM 框架,将 Java 对象映射到 SQLite 数据库中,我们操作数据库的时候,不再需要编写复杂的 SQL语句, 在性能方面,greenDAO 针对 Android 进行了高度优化,…...
kotlin 编写一个简单的天气预报app(六)使用recyclerView显示forecast内容
要使用RecyclerView显示天气预报的内容 先在grandle里添加recyclerView的引用 implementation androidx.recyclerview:recyclerview:1.3.1创建一个RecyclerView控件:在布局文件中,添加一个RecyclerView控件,用于显示天气预报的列表。 这是一…...
jpa Page 1 of 0 containing UNKNOWN instances错误关于like问题的解决记录
导致这个问题的原因很多,这里记录一下我碰到的问题和解决方法。 网上有说时 pageNo要从0开始,我的不是这个问题。 在使用springboot jpa时,发现使用 t.ip like %?5% 语句,如果数据库记录的ip is null时,将查询不到该…...
Python实战之使用Python进行数据挖掘详解
一、Python数据挖掘 1.1 数据挖掘是什么? 数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,通过算法,找出其中的规律、知识、信息的过程。Python作为一门广泛应用的编程语言,拥有丰富的数据挖掘库&#…...
scala 加载properties文件
利用java.util.Properties加载 import java.io.FileInputStream import java.util.Properties object LoadParameter {//动态获取properties文件可配置参数val props new Properties()def getParameter(s:String,filePath:String): String {props.load(new FileInputStream(f…...
备战秋招012(20230808)
文章目录 前言一、今天学习了什么?二、动态规划1.概念2.题目 总结 前言 提示:这里为每天自己的学习内容心情总结; Learn By Doing,Now or Never,Writing is organized thinking. 提示:以下是本篇文章正文…...
QT中定时器的使用
文章目录 概述步骤 概述 Qt中使用定时器大致有两种,本篇暂时仅描述使用QTimer实现定时器 步骤 // 1.创建定时器对象 QTimer *timer new QTimer(this);// 2.开启一个定时器,5秒触发一次 timer->start(5000); // 3.建立信号槽连接&am…...
【UE4】多人联机教程(重点笔记)
效果 1. 创建房间、搜索房间功能 2. 根据指定IP和端口加入游戏 步骤 1. 新建一个第三人称角色模板工程 2. 创建一个空白关卡,这里命名为“InitMap” 3. 新建一个控件蓝图,这里命名为“UMG_ConnectMenu” 在关卡蓝图中显示该控件蓝图 打开“UMG_Connec…...
日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
leetcodeSQL解题:3564. 季节性销售分析
leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...
android13 app的触摸问题定位分析流程
一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...
