当前位置: 首页 > news >正文

各种查找算法的效率分析

各种查找算法的效率

  1. 顺序查找
    • 一般顺序表(没有顺序,随机排列)
      • 成功时平均查找长度: 1 + . . . + n n = n + 1 2 \frac{1+...+n}{n}=\frac{n+1}{2} n1+...+n=2n+1
      • 失败时平均查找长度: n n n
    • 有序顺序表(按照递增或递减排列)
      在这里插入图片描述
      • 成功时平均查找长度: 1 + . . . + n n = n + 1 2 \frac{1+...+n}{n}=\frac{n+1}{2} n1+...+n=2n+1
      • 失败时平均查找长度: 1 + 2 + . . . + n + n n + 1 = n 2 + n n + 1 \frac{1+2+...+n+n}{n+1}=\frac{n}{2}+\frac{n}{n+1} n+11+2+...+n+n=2n+n+1n
  2. 折半查找(二分查找)
    • 用折半查找法找到给定值的比较次数不会超过树的高度(n个元素的树高为 ⌈ l o g 2 ( n + 1 ) ⌉ \lceil log_2(n+1)\rceil log2(n+1)⌉
    • 成功时的平均查找长度: A S L = 1 n ( 1 × 1 + 2 × 2 + 3 × 4 + . . . + h × 2 h − 1 = n + 1 n l o g 2 ( n + 1 ) − 1 ≈ l o g 2 ( n + 1 ) − 1 ASL=\frac{1}{n}(1\times 1+2\times 2+3\times 4+...+h\times 2^{h-1}=\frac{n+1}{n}log_2(n+1)-1\approx log_2(n+1)-1 ASL=n1(1×1+2×2+3×4+...+h×2h1=nn+1log2(n+1)1log2(n+1)1
    • 折半查找的时间复杂度为 O ( l o g 2 n ) O(log_2n) O(log2n)
  3. 分块查找(索引顺序查找)
    • 平均查找长度: A S L = L I + L S ASL=L_I+L_S ASL=LI+LS L I L_I LI为索引查找的平均查找长度, L S L_S LS为块内查找的平均查找长度)
      • 如将长度为n的查找表均匀地分成b块,每块有s个记录,在等概率情况下,若在块内和索引表中均采用顺序查找,则平均查找长度为 A S L = L I + L S = b + 1 2 + s + 1 2 = s 2 + 2 s + n 2 s ASL=L_I+L_S=\frac{b+1}{2}+\frac{s+1}{2}=\frac{s^2+2s+n}{2s} ASL=LI+LS=2b+1+2s+1=2ss2+2s+n。可见若 s = n s=\sqrt{n} s=n ,则平均查找长度取最小值 n + 1 \sqrt{n}+1 n +1
  4. 树型查找
    • 二叉排序树(主要取决于树的高度)
      • 若二叉排序树的左右子树高度之差不超过1(即平衡二叉树),则平均查找长度为 O ( l o g 2 n ) O(log_2{n}) O(log2n)
      • 若二叉排序树是一个只有左(右)孩子的单支树,则平均查找长度为 O ( n ) O(n) O(n)
    • 平衡二叉树(查找过程与二叉排序树相同)
      • 平均查找长度为 O ( l o g 2 n ) O(log_2n) O(log2n)
        • 因为含有n个节点的平衡二叉树的最大深度为 O ( l o g 2 n ) O(log_2n) O(log2n)
    • 红黑树
      • 平均查找长度为 O ( l o g 2 n ) O(log_2n) O(log2n)
    • B树和B+树
      请添加图片描述
      请添加图片描述
  5. 散列表
    虽然散列表在关键字与记录的存储位置之间建立了直接映像,但由于冲突的产生,使得散列表的查找过程仍然是一个给定值和关键字进行比较的过程。因此仍需以平均查找长度作为衡量散列表的查找效率的度量。
    散列表的查找效率取决于三个因素:散列函数、冲突处理的方法和装填因子。
    直观的看, α \alpha α越大,表示装填的记录越满,发生冲突的可能性越大。

折半查找(二分查找)与二叉排序树的区别

二叉排序树与二分查找(折半查找)的查找过程相似,平均时间性能差不多。不同点如下:

  1. 唯一性:二分查找的判定树唯一,而二叉排序树随着关键字插入顺序不同可能生成不同的二叉排序树
  2. 插入和删除:二分查找的对象是有序顺序表,若有插入和删除节点的操作,所花的代价是 O ( n ) O(n) O(n);二叉排序树则无需移动节点,只需修改指针即可完成插入和删除操作
  3. 适用于动态还是静态:当有序表是静态查找表时,宜用顺序表作为其存储结构,采用二分查找实现找操作;若有序表是动态查找表,应选择二叉排序树作为其逻辑结构

平衡二叉树和红黑树的区别

二者的查、插、删的时间复杂度都是 O ( l o g 2 n ) O(log_2n) O(log2n),区别如下:

  1. 平衡二叉树的插入和删除很容易破坏平衡特性,故插/删后大都需要调整树的形态(计算平衡因子+找到最小不平衡树+LL/RR/LR/RL),这样一来时间开销就很大;而红黑树由于其特性,很多时候插入删除后并不会破坏红黑特性,即便需要调整一般也都可以在常数级时间内完成
  2. 即虽然二者的插、删、查的时间复杂度都是 O ( l o g 2 n ) O(log_2n) O(log2n),但实际上红黑树的插入和删除性能更好一点,平衡二叉树的查找性能更好一点
  3. 使用场景:平衡二叉树适用于以查为主、很少插入/删除的场景;红黑树适用于频繁插入、删除的场景,实用性更强

B树和B+树的区别

二者相同点是:除根节点外,最少 ⌈ m 2 ⌉ \lceil\frac{m}{2}\rceil 2m个分叉(确保节点不要太空)。任何一个节点的子树都要一样高(确保绝对平衡)

-m阶B树m阶B+树
类比二叉查找树的进化 --> m叉查找树分块查找的进化 --> 多级分块查找
关键字与分叉n个关键字对应n+1个分叉(子树)n个关键字对应n个分叉
节点包含的信息所有节点中都包含记录的信息只有最下层叶子节点才包含记录的信息(每个节点能存的信息更多,因此可以使树更矮),且叶节点包含所有的关键字
查找方式不支持顺序查找。查找成功时,可能停在任何一层节点,查找速度不稳定支持顺序查找。查找成功或失败都会到达最下一层节点,查找速度稳定

相关文章:

各种查找算法的效率分析

各种查找算法的效率 顺序查找 一般顺序表(没有顺序,随机排列) 成功时平均查找长度: 1 . . . n n n 1 2 \frac{1...n}{n}\frac{n1}{2} n1...n​2n1​失败时平均查找长度: n n n 有序顺序表(按照递增或递…...

微报告下载!市场不确定性周期下的激光雷达前装赛道

随着理想L9 Pro版本(取消激光雷达)的上市(相比AD Max版本降价3万元),中国乘用车市场仅剩下蔚来(NT2.0平台)、阿维塔11仍全系标配激光雷达。 这对于激光雷达赛道来说,是一个明确的信…...

Java版企业电子招标采购系统源码Spring Cloud + Spring Boot +二次开发+ MybatisPlus + Redis tbms

​ 功能描述 1、门户管理:所有用户可在门户页面查看所有的公告信息及相关的通知信息。主要板块包含:招标公告、非招标公告、系统通知、政策法规。 2、立项管理:企业用户可对需要采购的项目进行立项申请,并提交审批,查…...

并网逆变器学习笔记6---三电平SVPWM下的连续和不连续调制

之前在学习中总结过一次DPWM策略选择:并网逆变器学习笔记5---三电平DPWM 但是对于三电平逆变器而言,如何从连续调制切换到不连续调制,存在一些疑惑点,下午闲来无事,把SVPWM下的连续调制和不连续调制的开关状态选择&am…...

TS协议之PES(ES数据包)

TS协议之PAT(节目关联表)TS协议之PMT(节目映射表)TS协议之PES(ES数据包) 该文档已上传:下载地址 1. 概要 1.1 TS数据包(PES)协议数据组成 TSTS头PES头ES。TS&#xf…...

银河麒麟V10 SP3 X86 二进制文件部署 mysql-5.7.29 GTID 半同步复制的双主架构

文章目录 [toc]啰嗦一下mysql 的 AB 复制和 gtid 复制的优缺点AB 复制(Asynchronous Replication)GTID 复制(Global Transaction Identifier Replication) mysql gtid 并行复制和半同步复制的优缺点并行复制(Parallel …...

python爬虫3:requests库-案例1

python爬虫3:requests库-案例1 前言 ​ python实现网络爬虫非常简单,只需要掌握一定的基础知识和一定的库使用技巧即可。本系列目标旨在梳理相关知识点,方便以后复习。 申明 ​ 本系列所涉及的代码仅用于个人研究与讨论,并不会对网…...

计算机网络 数据链路层 媒体接入控制

...

面部表情识别(Pytorch):人脸检测模型+面部表情识别分类模型

目录 0 相关资料1 基于人脸检测面部表情分类识别方法2 项目安装2.1 平台与镜像2.2 项目下载2.3 模型下载2.4 上传待测试图片2.5 项目安装 3 demo测试 0 相关资料 面部表情识别2:Pytorch实现表情识别(含表情识别数据集和训练代码):https://blog.csdn.net…...

外卖点餐小程序开源源码——支持扫码点餐

一套支持店内扫码点餐、外卖点餐配送于一体的餐饮系统,支持商家创建优惠券,支持商家自定义打印机功能,支持商家财务管理,支持商户菜品管理,支持菜品自定义分类,支持商家招募骑手入驻功能。系统基于thinkphp…...

十分钟掌握使用 SolidJS 构建全栈 CRUD 应用程序

我们可以开始讨论 SolidJS,说它比React更好,但没有必要做这种比较。SolidJS只是众多前端框架之一,旨在在Web上快速创建数据驱动。那么,我们为什么要突出这个新孩子呢? 首先,我们不能忽视SolidJS不使用虚拟…...

LabVIEW开发多材料摩擦电测量控制系统

LabVIEW开发多材料摩擦电测量控制系统 摩擦电效应是两个物体摩擦在一起,电荷从一个物体转移到另一个物体的现象,从而导致两个物体携带相等和相反的电荷。接触和充电是主导该过程的两个关键因素。当静电荷累积到一定水平时,可能会出现放电现象…...

【Linux】网络基础1

文章目录 网络基础11. 计算机网络背景1.1 网络发展 2. 认识协议2.1 网络协议2.2 OSI七层模型2.3 TCP/IP五层(或四层)模型 3. 网络传输基本流程3. 1 数据报封装和分用 4. 网络中的地址管理4.1 认识IP地址 5. 认识MAC地址 网络基础1 1. 计算机网络背景 1…...

HTML - Javascript - 原生的JS HTTP请求:实用主义的一篇文章

HTML - Javascript - 原生的JS HTTP请求:实用主义的一篇文章 前言 虽然现在使用JQuery等可以做到很方便的HTTP请求,但是这样做毕竟要引入一些JS文件。 如果想使用原生的JS进行HTTP网络请求应该怎样呢?可以使用XMLHttpRequest。 使用方法 …...

Intellij IDEA运行报Command line is too long的解决办法

想哭,vue前端运行起来,对应的后端也得起服务。 后端出的这个bug,下面的博客写的第二种方法,完整截图是下面这个。 ​​​​​​​​​​​​​​​​​​​​Intellij IDEA运行报Command line is too long的解决办法 - 知乎 (zh…...

信号槽传输过程中指针所指对象的生命周期

在子线程中的一个槽函数,当读取到dxf文件完成后,结果通过在该槽函数中的 dx_data* pDxfData 指针变量读取。 然后通过QVariant封装该指针变量。发送到主线程中。 void qcWorker::slotReadDxfFile(QString dir) {bool bRtn{ false }; //定义一个局部指针…...

c++ 递归锁的使用

非递归锁 同一个线程里&#xff0c;在锁未释放的情况下反复加锁&#xff0c;会导致死锁。 示例 #include <iostream> #include <mutex> #include <thread> #include <unistd.h> using namespace std;std::mutex m_mutex;void Func() {m_mutex.lock(…...

Oracle TDE wallet

1. 钱夹密码千万不能忘记&#xff0c;这也是使用TDE 需要承担的风险。 2. 只要将wallet cwallet.sso 拷贝过去&#xff0c;加密没有意义&#xff01; 钱夹的备份 正如上述&#xff0c;已经加密过的表列或者表空间&#xff0c;钱夹必须打开才能够查询到里面的数据。如果钱夹丢…...

多模态学习

一、目标 三、多模态核心任务 题目&#xff1a;...

Android学习之路(2) 文本设置

Android学习之路(1) 文本 一、设置文本内容 设置文本内容的两种方式&#xff1a; 一种是在XML文件中通过属性android:text设置文本代码如下 <TextViewandroid:id"id/tv_hello"android:layout_width"wrap_content"android:layout_height"wrap_c…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障

关键领域软件测试的"安全密码"&#xff1a;Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力&#xff0c;从金融交易到交通管控&#xff0c;这些关乎国计民生的关键领域…...

DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态

前言 在人工智能技术飞速发展的今天&#xff0c;深度学习与大模型技术已成为推动行业变革的核心驱动力&#xff0c;而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心&#xff0c;系统性地呈现了两部深度技术著作的精华&#xff1a;…...

Python网页自动化Selenium中文文档

1. 安装 1.1. 安装 Selenium Python bindings 提供了一个简单的API&#xff0c;让你使用Selenium WebDriver来编写功能/校验测试。 通过Selenium Python的API&#xff0c;你可以非常直观的使用Selenium WebDriver的所有功能。 Selenium Python bindings 使用非常简洁方便的A…...

沙箱虚拟化技术虚拟机容器之间的关系详解

问题 沙箱、虚拟化、容器三者分开一一介绍的话我知道他们各自都是什么东西&#xff0c;但是如果把三者放在一起&#xff0c;它们之间到底什么关系&#xff1f;又有什么联系呢&#xff1f;我不是很明白&#xff01;&#xff01;&#xff01; 就比如说&#xff1a; 沙箱&#…...