Codeforces Round 889 (Div. 2)C题题解
文章目录
- [Dual (Hard Version)](https://codeforces.com/contest/1855/problem/C2)
- 问题建模
- 问题分析
- 1.按元素值分类讨论,正负不同时存在时
- 2.若正负同时存在时
- 代码
Dual (Hard Version)

问题建模
给定n个数,n不超过20,且每个数ai, − 20 < = a i < = 20 -20<=ai<=20 −20<=ai<=20,可以执行多次操作,每次可以选择两个数ai,aj,使得ai=ai+aj,需要在31次操作内使得元素为非降序排列,并输出操作数和操作使选取的i,j。
问题分析
1.按元素值分类讨论,正负不同时存在时
若元素值都为大于等于0时,对于每一个比前一个元素小的元素,加上前面元素后,就会变成所需的大小关系,操作最多为19次。
若元素值都为小于等于0时,对于每一个比前一个元素小的元素,让前面的元素加上当前元素即可变成所需的大小关系,操作最多为19次。
2.若正负同时存在时
若正负数都有,则可以将负数变成正的或者正数变为负的,变为上面两种情况之一,由于转换为上面两种情况后最多需要19次操作才能使得最终元素排列为所需,则最多有12次操作可以将当前情况变为上述两种情况之一。
由于改变元素正负需要通过最大正数或者负数来进行,则从绝对值最大的正负性的情况来分析。
若绝对值最大的数为正数,则考虑将负数都变为正数,若负数的个数不超过12时,可以完成。
若超过12个则只能考虑将正数都变为负数,由于负数个数超过12,则正数最多只有7个数,则可以考虑使用5次操作获得一个比所有正数绝对值大的负数,然后再将7个正数变为负数,由于i,j选择同一个数时,等价2乘该数,则选择5次有2^5,负数绝对值最小的数为-1,5次操作后为-32其绝对值大于最大的正数,故可以在12次内将将正数变为负数。(绝对值最大为负数同理)
所以最终有解的情况,为取将所有元素变为大于等于0的数所需操作以及将所有元素变为小于等于0的数所需操作的最小操作数的操作方案。
代码
#include<bits/stdc++.h>#define x first
#define y second
#define C(i) str[0][i]!=str[1][i]
using namespace std;
typedef unsigned long long ULL;
typedef long long LL;
typedef pair<int, int> PII;
typedef pair<LL, LL> PLL;
const int N = 30, Mod = 998244353, P = 2048;
int a[N];void solve() {int n;cin >>n;///正负数个数,以及正负数中绝对值最大的元素的下标,起始时对应元素为0int pcnt=0,ncnt=0,minp=0,maxp=0;for(int i=1;i<=n;i++){cin >>a[i];if(a[i]>0){pcnt++;if(a[i]>a[maxp]) maxp=i;}else if(a[i]<0){ncnt++;if(abs(a[i])>abs(a[minp])) minp=i;}}if(pcnt==0&&ncnt==0){cout <<0<<endl;}else {int x1=0,y1=0;///记录,获得正数绝对值最大,和负数绝对值最大所需的操作数if(abs(a[maxp])>=abs(a[minp])) y1=5;else x1=5;//采用变正和变负中操作数最小的操作方案if(x1+ncnt<=y1+pcnt){cout <<x1+ncnt+n-1<<"\n";for(int i=0;i<x1;i++) cout <<maxp<<" " <<maxp<<"\n";for(int i=1;i<=n;i++){if(a[i]<0) cout <<i <<" " <<maxp <<"\n";}for(int i=1;i<n;i++) cout <<i+1 <<" " <<i <<"\n";}else{cout <<y1+pcnt+n-1 <<"\n";for(int i=0;i<y1;i++) cout <<minp<<" " <<minp<<"\n";for(int i=1;i<=n;i++){if(a[i]>0) cout <<i <<" " <<minp <<"\n";}for(int i=n;i>1;i--) cout <<i-1 <<" " <<i <<"\n";}}
}int main() {int t = 1;cin >> t;while (t--) solve();return 0;
}
相关文章:
Codeforces Round 889 (Div. 2)C题题解
文章目录 [Dual (Hard Version)](https://codeforces.com/contest/1855/problem/C2)问题建模问题分析1.按元素值分类讨论,正负不同时存在时2.若正负同时存在时代码 Dual (Hard Version) 问题建模 给定n个数,n不超过20,且每个数ai,…...
无涯教程-Perl - Subroutines(子例程)
定义子程序 Perl编程语言中 Subroutine子程序定义的一般形式如下: sub subroutine_name {body of the subroutine } 调用该Perl Subroutine的典型方式如下- subroutine_name( list of arguments ); 在Perl 5.0之前的版本中,调用 Subroutine的语法略有不同&…...
Rpc异步日志模块
Rpc异步日志模块作用 在一个大型分布式系统中,任何部署的分布式节点都可能发生崩溃,试想如果用普通的办法,即先排查哪个节点down掉了,找到down掉的节点后采取调试工具gdb调试该节点,进而排查宕机的原因。这中排查方法…...
python-pip
pip 路径 python 下载后自带pip ,在scripts 下,如 D:\install\python\Scripts numpy pip3 install numpy scipy matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simplepandas D:\install\python\Scripts>pip3 install pandas -i https://pypi.tuna.tsingh…...
无涯教程-Perl - getppid函数
描述 该函数返回父进程的进程ID。 语法 以下是此函数的简单语法- getppid返回值 该函数返回父进程的进程ID。 例 以下是显示其基本用法的示例代码- #!/usr/bin/perl$ppidgetppid();print "Parent Process ID $ppid\n";执行上述代码后,将产生以下输出- Paren…...
AUTOSAR规范与ECU软件开发(基础篇)1.2 汽车电子控制系统的基本构成
目录 前言 1、 传感器 2、 电子控制单元(ECU) 3、 执行器 前言 汽车电子控制系统主要由传感器(Sensor) 、 电子控制单元(Electronic Control Unit, ECU) 和执行器(Actuator) 组成(图1.1) ,对被控对象(Controlled Object)...
一个可以通过多个条件筛选的系统界面是如何实现的(springboot+mybatis)
比如我们有一个订单记录管理界面 条件可以通过订单号、商品名称、创建日期范围、价格范围。。。来进行筛选查询。 首先我们先确定数据库订单表(我这里就不做连表了,都放在一个表中)模拟一个订单表 order表 订单号商品名称创建日期价格地址…...
WebRTC | 实现数据流的一对一通信
目录 一、浏览器对WebRTC的支持 二、MediaStream与MediaStreamTrack 三、RTCPeerConnection 1. RTCPeerConnection与本地音视频数据绑定 2. 媒体协商SDP 3. ICE (1)Candidate信息 (2)WebRTC收集Candidate (3&…...
基于MATLAB小波变换的信号突变点检测
之前在不经意间也有接触过求突变点的问题。在我看来,与其说是求突变点,不如说是我们常常玩的"找不同"。给你两幅图像,让你找出两个图像中不同的地方,我认为这其实也是找突变点在生活中的应用之一吧。回到找突变点位置上…...
JUC并发编程(JUC核心类、TimeUnit类、原子操作类、CASAQS)附带相关面试题
目录 1.JUC并发编程的核心类 2.TimeUnit(时间单元) 3.原子操作类 4.CAS 、AQS机制 1.JUC并发编程的核心类 虽然java中的多线程有效的提升了程序的效率,但是也引发了一系列可能发生的问题,比如死锁,公平性、资源管理…...
个人用C#编写的壁纸管理器 - 开源研究系列文章
今天介绍一下笔者自己用C#开发的一个小工具软件:壁纸管理器。 开发这个小工具的初衷是因为Windows操作系统提供的功能个人不满意,而且现在闲着,所以就随意写了个代码。如果对读者有借鉴参考作用就更好了,能够直接代码段复用即可。…...
iTextSharp 生成PDF
示例代码定义了一个名为PdfController的API控制器,其中的GeneratePdf方法创建了一个新的PDF文档,并将内容添加到文档中。最后,将文档内容转换为字节数组,并通过File方法返回给前端。 注意,你需要在你的项目中添加对iT…...
基于微信小程序的传染病酒店隔离平台设计与实现(Java+spring boot+MySQL+微信小程序)
获取源码或者论文请私信博主 演示视频: 基于微信小程序的传染病酒店隔离平台设计与实现(Javaspring bootMySQL微信小程序) 使用技术: 前端:html css javascript jQuery ajax thymeleaf 微信小程序 后端:…...
vue3中用watch监听响应式数据的注意点
如果你在vue3中使用reactive()方法创建响应式数据,然后又用torefs()方法将响应式数据解构成单一的ref响应式数据。 此时,如果你想用watch监听解构出来单一的响应式数据,watch不起作用。 此时,你需要用watch监听之前的reactive()…...
Jmeter(五) - 从入门到精通 - 创建网络计划实战和创建高级Web测试计划(详解教程)
1.简介 上一篇中已经将其的理论知识介绍了一下,这一篇就带着大家一步一步的把上一篇介绍的理论知识实践一下,然后再说一下如何创建高级web测试计划。 2.网络计划实战 通过上一篇的学习,将其分类为: (1)不需…...
【单片机】51单片机,TLC2543,驱动程序,读取adc
TLC2543 是一款 12 位精密模数转换器 (ADC)。 1~9、11、12——AIN0~AIN10为模拟输入端; 15——CS 为片选端; 17——DIN 为串行数据输入端;(控制字输入端,用于选择转换及输出数据格式) 16——…...
誉天HCIE-Cloud_Computing3.0课程简介
课时:60 第一天 1. 华为云 Stack 解决方案及架构介绍 3. 华为云 Stack 的安装流程解析及规划设计 4. 华为云 Stack 的网络平面的规划解析 5. 华为云 Stack Deploy 部署工具的安装,配置,创建工程,下载 LLD 表 6. 华为云 Stack 的 …...
Unity之ShaderGraph 节点介绍 Procedural节点
程序化 噪声Gradient Noise(渐变或柏林噪声)Simple Noise(简单噪声)Voronoi(Voronoi 噪声) 形状Ellipse(椭圆形)Polygon(正多边形)Rectangle(矩形…...
期权定价模型系列【1】—BSM通用式模型
这是期权定价模型专栏的第一篇文章,此专栏旨在分享一些期权定价模型,将会从最基础的BSM模型开始写起,逐步扩散到蒙特卡洛模拟、二叉树等数值法模型,以及跳跃扩散模型、随机波动率模型,神经网络模型等等。 如果你觉得有…...
HA3 SQL样本实验:一种混合计算查询的全新样本解决方案
作者:陆唯一(芜霜) HA3(对外开源代号:Havenask )是阿里智能引擎团队自研的大规模分布式检索系统,广泛应用于阿里内部的搜索业务,是十多年来阿里在电商领域积累下来的核心竞争力产品。Ha3 SQL 是在原有Ha3引…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
HTML前端开发:JavaScript 常用事件详解
作为前端开发的核心,JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例: 1. onclick - 点击事件 当元素被单击时触发(左键点击) button.onclick function() {alert("按钮被点击了!&…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...
