游戏行业实战案例 4 :在线时长分析

【面试题】某游戏数据后台设有「登录日志」和「登出日志」两张表。
「登录日志」记录各玩家的登录时间和登录时的角色等级。

「登出日志」记录各玩家的登出时间和登出时的角色等级。

其中,「角色id」字段唯一识别玩家。
游戏开服前两天( 2022-08-13 至 2022-08-14 )的角色登录和登出日志如下


一天中,玩家可以多次登录登出游戏,请使用 SQL 分析出以下业务问题:
请根据玩家登录登出的时间,统计各玩家每天总在线时长情况。
(如玩家登录后没有对应的登出日志,可以使用当天 23:59:59 作为登出时间,时间之间的计算可以考虑使用时间戳函数 unix_timestamp 。)
问题 4 :
统计各玩家每天总在线时长分为两步:
第一步,计算各玩家每天每次登录游戏后的在线时长;
第二步,对各玩家每天每次的在线时长进行求和,得到各玩家每天的总在线时长。
1. 计算各玩家每天每次登录游戏后的在线时长
玩家每次登录后的在线时长=每次的登出时间-每次对应的登录时间,因此,我们需要对玩家的登录时间、登出时间进行一一对应。
登录时间从「登录日志」表获取,登出时间从「登出日志」表获取。那么,如何对玩家的登录时间、登出时间进行一一对应呢?
玩家每次登录后必然伴随着登出,因此玩家的登录时间顺序与登出时间顺序是一致的。对每个玩家的登录时间进行排序得到排名,再对每个玩家的登出时间进行排序得到排名,那么登录时间对应的排名必然与登出时间对应的排名一致。即:排名为1的登录时间与排名为 1 的登出时间相对应,排名为 2 的登录时间与排名为 2 的登出时间相对应……
使用排序窗口函数对每个玩家的登录登出时间进行排序(三个排序窗口函数选择其一即可,在此选择 rank() 窗口函数),由于要获取每个玩家每天的登录登出时间排名,因此以角色 id ,日期进行分组,以登录或登出时间升序排序,即 partition by 角色 id ,日期 order by 登录时间/登出时间 asc 对登录登出时间进行排序的 SQL 的书写方法:
#对每个玩家每天的登录时间进行排序
select 角色id,日期,登录时间,rank() over(partition by 角色id,日期 order by 登录时间 asc) as 登录排名
from 登录日志;
#对每个玩家每天的登出时间进行排序
select 角色id,日期,登出时间,rank() over(partition by 角色id,日期 order by 登出时间 asc) as 登出排名
from 登出日志; 查询结果如下:


对每个玩家每天的登录登出时间进行排序后,就可以将登录登出时间进行一一对应了。
如何一一对应呢?通过横向联结就可以实现,即使用 join 联结方法。
根据题意,「登录日志」表中的登录时间不存在缺失,而「登出日志」表中某个玩家的登出时间可能存在缺失,为了在联结的时候完整的保留登录登出时间,将上述查询结果1设为临时表a,查询结果 2 设为临时表 b ,并让临时表 a 左联结( left join )临时表 b 。
左联结时,还需要设置条件使两个临时表的角色 id 、日期和排名相等,这样才能使登录登出时间一一对应。
进行左联结的 SQL 的书写方法:
select a.角色id,a.日期,a.登录时间,b.登出时间
from
(select 角色id,日期,登录时间,rank() over(partition by 角色id,日期 order by 登录时间 asc) as 登录排名
from 登录日志) as a
left join
(select 角色id,日期,登出时间,rank() over(partition by 角色id,日期 order by 登出时间 asc) as 登出排名
from 登出日志) as b
on a.角色id = b.角色id and a.日期 = b.日期 and a.登录排名 = b.登出排名; 查询结果如下:

需要注意的是,根据题意:如玩家登录后没有对应的登出日志,可以使用当天 23:59:59 作为登出时间。也就是说,若玩家登录后没有对应的登出日志,则进行左联结后「登出时间」这一列会存在空值,而空值可以使用当 23:59:59 进行填充。
如何实现这一操作呢?
可以使用 case when 子句进行条件判断,当「登出时间」这一列的某个值为空值时,则使用当天 23:59:59 作为值,否则就不改变值,即:
case when 登出时间 is null then 当天23:59:59 else 登出时间 end 除了使用 case when 填充空值,还可以使用 ifnull() 函数填充空值。ifnull() 函数的语法为:
ifnull(值1,值2) 其中,若值 1 为 null ,则返回值 2 ,若值 1 不为 null ,则返回值 1 。
比如:
ifnull(null,1) ,返回值为 1 ;ifnull(0,1) ,返回值为 0 。
将其应用于本问题,则是:
ifnull(登出时间,'当天23:59:59') 即:若登出时间为 null ,则返回当天 23:59:59 ,若登出时间不为 null ,则返回登出时间。
case when 子句和 ifnull() 函数能达到同样的效果,两者选择其一即可。在此选择 case when 子句进行条件判断。
那么,如何得到当天 23:59:59 呢?
当天即为「日期」列中的值,因此我们可以将「日期」列中的值与 23:59:59 进行合并得到当天 23:59:59 。合并字符串使用 concat() 函数,合并时日期与 23:59:59 之间存在一个空格,使时间格式一致,即:
concat(日期,' 23:59:59') 这样,在左联结时,同时填充「登出时间」字段空值的 SQL 的书写方法为:
select a.角色id,a.日期,a.登录时间,(case when b.登出时间 is null then concat(a.日期,'23:59:59') else b.登出时间 end) as 登出时间 #使用ifnull()函数,则为ifnull(b.登出时间,concat(a.日期,' 23:59:59')) as 登出时间
from
(select 角色id,日期,登录时间,rank() over(partition by 角色id,日期 order by 登录时间 asc) as 登录排名
from 登录日志) as a
left join
(select 角色id,日期,登出时间,rank() over(partition by 角色id,日期 order by 登出时间 asc) as 登出排名
from 登出日志) as b
on a.角色id = b.角色id and a.日期 = b.日期 and a.登录排名 = b.登出排名; 查询结果如下:

可以看到,登录时间和登出时间已经一一对应,将登出时间减去登录时间就可以得到玩家每次登录后的在线时长。
将上述查询结果设为临时表 c ,则计算每个玩家每天每次登录后的在线时长的 SQL 的书写方法为:
select 角色id,日期,
unix_timestamp(登出时间) - unix_timestamp(登录时间) as 每次在线时长
from c; unix_timestamp() 函数可以将日期时间格式转化成 10 位数的时间戳格式,单位为秒,因此,为了得到单位为分钟的在线时长,我们需要在登出登录时间相减后再除以 60 秒,即:
select 角色id,日期,(unix_timestamp(登出时间) - unix_timestamp(登录时间))/60 as 每次在线时长_min
from c; 利用 with…as 语句来封装临时表 c 的查询语句,则 SQL 的书写方法:
with c as
(select a.角色id,a.日期,a.登录时间,(case when b.登出时间 is null then concat(a.日期,'23:59:59') else b.登出时间 end) as 登出时间
from
(select 角色id,日期,登录时间,rank() over(partition by 角色id,日期 order by 登录时间 asc) as 登录排名
from 登录日志) as a
left join
(select 角色id,日期,登出时间,rank() over(partition by 角色id,日期 order by 登出时间 asc) as 登出排名
from 登出日志) as b
on a.角色id = b.角色id and a.日期 = b.日期 and a.登录排名 = b.登出排名
)
select 角色id,日期,
round((unix_timestamp(登出时间)- unix_timestamp(登录时间))/60,2) as 每次在线时长_min #使用round()函数保留2位小数
from c; 查询结果如下:

2. 计算各玩家每天的总在线时长
使用 group by 子句对角色 id 、日期进行分组,再使用 sum() 函数对每个玩家每天的每次在线时长进行求和,就可以得到各玩家每天的总在线时长。
SQL 的书写方法:
with c as
(select a.角色id,a.日期,a.登录时间,(case when b.登出时间 is null then concat(a.日期,'23:59:59') else b.登出时间 end) as 登出时间
from
(select 角色id,日期,登录时间,rank() over(partition by 角色id,日期 order by 登录时间 asc) as 登录排名
from 登录日志) as a
left join
(select 角色id,日期,登出时间,rank() over(partition by 角色id,日期 order by 登出时间 asc) as 登出排名
from 登出日志) as b
on a.角色id = b.角色id and a.日期 = b.日期 and a.登录排名 = b.登出排名
)
select 角色id,日期,
sum(round((unix_timestamp(登出时间)- unix_timestamp(登录时间))/60,2)) as 总在线时长_min #使用round()函数保留2位小数
from c
group by 角色id,日期; 查询结果如下:


⬇️点击「阅读原文」
免费报名 数据分析训练营
相关文章:
游戏行业实战案例 4 :在线时长分析
【面试题】某游戏数据后台设有「登录日志」和「登出日志」两张表。 「登录日志」记录各玩家的登录时间和登录时的角色等级。 「登出日志」记录各玩家的登出时间和登出时的角色等级。 其中,「角色id」字段唯一识别玩家。 游戏开服前两天( 2022-08-13 至 …...
记一次图片压缩引发的生产问题
省流: 死循环导致没有commit(提交事务),transaction一直没有结束。 正文: 调用接口报错: jdbc报错: MySQLTransactionRollbackException: Lock wait timeout exceeded; try restarting tran…...
mybatis-flex探索
mybatis古今未来 最近无意之中发现了一个非常棒的持久层框架mybatis-flex,迫不及待研究了一下 发现简直就是我的梦中情框,之前写ibatis,后来写mybatis,接着写mybatis-plus,接着研究mybatis-flex ibatis ibatis是apa…...
用ClickHouse 文件表引擎快速查询分析文件数据
有时我们需要快速查询分析文件数据,正常流程需要在数据库中创建表,然后利用工具或编码导入数据,这时才能在数据库中查询分析。利用ClickHouse文件引擎可以快速查询文件数据。本文首先介绍ClickHouse文件引擎,然后介绍如何快速实现…...
esp8266httpclient_get_post使用
esp8266httpclient_get_post使用 #include<ESP8266WiFi.h> #include <ESP8266HTTPClient.h>//const char *ssid "AxxxIFI"; const char *password "xxxs879xxx68";const char* ssid "IT-nxxxang";const char* URL "http://…...
【Spring】创建一个Spring项目与Bean对象的存储
目录 一、创建Spring项目 1、创建Maven项目 2、配置maven国内源 3、引入spring依赖 4、添加启动类 二、将Bean对象存储到Spring(IoC容器) 1、创建Bean对象 2、将Bean存储到spring(容器)中 3、获取Bean对象 3.1、Applicatio…...
Docker的入门与使用
什么是Docker? docker官网 简介与概述 Docker 是一个开源的应用容器引擎,基于 Go 语言 并遵从 Apache2.0 协议开源。 Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级、可移植的容器中,然后发布到任何流行的 Linux 机器上&#x…...
Smart HTML Elements 16.1 Crack
Smart HTML Elements 是一个现代 Vanilla JS 和 ES6 库以及下一代前端框架。企业级 Web 组件包括辅助功能(WAI-ARIA、第 508 节/WCAG 合规性)、本地化、从右到左键盘导航和主题。与 Angular、ReactJS、Vue.js、Bootstrap、Meteor 和任何其他框架集成。 智…...
[分享]STM32G070 串口 乱码 解决方法
硬件 NUCLEO-G070RB 工具 cubemx 解决方法 7bit 改为 8bit printf 配置方法 添加头文件 #include <stdio.h> 添加重定向代码 #ifdef __GNUC__#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)#else#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)#endi…...
[代码案例]学会python读写各类文件的操作(excel,txt,mat)
简介 python读写三类文件 excel文件 txt文件 mat文件 代码 """Description: python 读写各类文件 操作 """ import scipy as scipy from scipy.io import loadmat import xlwt import xlrd 读写excel文件workbook xlrd.open_workbook(test1.…...
【LeetCode】练习习题集【4月 - 7 月】
LEETCODE习题集【4月-7月总结】 简单 数组部分 1.重复数 题目: 在一个长度u为 n 的数组 nums 里的所有数字都在 0~n-1 的范围内。数组中某些数字是重复的,但不知道有几个数字重复了,也不知道每个数字重复了几次。请找出数组中…...
C# 子类强制转换为父类异常,引出的C#Dll加载机制,以及同类名同命名空间同dll程序集在C#中是否为同一个类的研究。
已知,子类B继承自父类A,但是在代码运行时,B类强制转换为A类,却报代码转换异常。 很奇怪的问题吧,不过这个也是难得机会,去研究C#运行的底层原理。 下面是报错的代码片段。 string className _shapeRefle…...
Go语言进阶
个人笔记,大量摘自Go语言高级编程、Go|Dave Cheney等 更新 go get -u all 在非go目录运行go install golang.org/x/tools/goplslatest更新go tools:在go目录运行go get -u golang.org/x/tools/...,会更新bin目录下的应用; 运行…...
Java的枚举
枚举 对应英文(enumeration, 简写enum) 枚举是一组常量的集合,属于一种特殊的类,里面只包含一组有限的特定的对象。 自定义类实现枚举 1.不需要提供setXxx方法,因为枚举对象值通常为只读. 2.对枚举对象/属性使用 final static共同修饰…...
Pytest测试框架3
目录: pytest结合数据驱动-yamlpytest结合数据驱动-excelpytest结合数据驱动-csvpytest结合数据驱动-jsonpytest测试用例生命周期管理(一)pytest测试用例生命周期管理(二)pytest测试用例生命周期管理(三&a…...
【数学建模】-- Matlab中图的最短路径
前言: 图的基本概念: 若想简单绘制图可以利用此网站: 左上角Undirected/Directed是无向图/有向图 左边 0-index ,1-index为0下标,1下标。 Node Count为节点个数 Graph Data:最初尾节点的名称ÿ…...
中国月入过万的人多不多
Q:中国月入过万的人多不多 单从这个问题来看,这是个费米问题啊: 估算中国月入过万的有多少人? 要解决费米问题,其实也很好办,就是逻辑拆解,这篇文章也分为3个部分,先从公开数据中估…...
苹果电脑图像元数据编辑器:MetaImage for Mac
MetaImage for Mac是一款功能强大的照片元数据编辑器,它可以帮助用户编辑并管理照片的元数据信息,包括基本信息和扩展信息。用户可以根据需要进行批量处理,方便快捷地管理大量照片。 MetaImage for Mac还提供了多种导入和导出格式࿰…...
BeanUtils.copyProperties() 详解
BeanUtils.copyProperties会进行类型转换; BeanUtils.copyProperties方法简单来说就是将两个字段相同的对象进行属性值的复制。如果 两个对象之间存在名称不相同的属性,则 BeanUtils 不对这些属性进行处理,需要程序手动处理。 这两个类在不同…...
基于CentOS 7构建LVS-DR集群
DIPVIPRIPClient192.169.41.139 LVS 192.168.41.134192.169.41.10RS1192.168.41.135RS2192.168.41.138 要求: node4为客户端,node2为LVS,node3和node4为RS。 1.配置DNS解析(我这里使用本地解析) 192.168.41.134 www.y…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
selenium学习实战【Python爬虫】
selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...
OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
【笔记】WSL 中 Rust 安装与测试完整记录
#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统:Ubuntu 24.04 LTS (WSL2)架构:x86_64 (GNU/Linux)Rust 版本:rustc 1.87.0 (2025-05-09)Cargo 版本:cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...
【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error
在前端开发中,JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作(如 Promise、async/await 等),开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝(r…...
深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向
在人工智能技术呈指数级发展的当下,大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性,吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型,成为释放其巨大潜力的关键所在&…...
Modbus RTU与Modbus TCP详解指南
目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...
门静脉高压——表现
一、门静脉高压表现 00:01 1. 门静脉构成 00:13 组成结构:由肠系膜上静脉和脾静脉汇合构成,是肝脏血液供应的主要来源。淤血后果:门静脉淤血会同时导致脾静脉和肠系膜上静脉淤血,引发后续系列症状。 2. 脾大和脾功能亢进 00:46 …...
boost::filesystem::path文件路径使用详解和示例
boost::filesystem::path 是 Boost 库中用于跨平台操作文件路径的类,封装了路径的拼接、分割、提取、判断等常用功能。下面是对它的使用详解,包括常用接口与完整示例。 1. 引入头文件与命名空间 #include <boost/filesystem.hpp> namespace fs b…...
