当前位置: 首页 > news >正文

【多维定向滤波器组和表面波】表面变换:用于高效表示多维 s 的多分辨率变换(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

文献来源:

1992年,班贝格和史密斯提出了定向滤波器组(DFB),用于2D信号的有效定向分解。由于系统的不可分离性,将DFB扩展到更高的维度,同时仍保留其吸引人的功能是一个具有挑战性且以前未解决的问题。我们提出了一个名为NDFB的新滤波器组系列,它可以通过简单高效的树形结构实现任意N维(Nges2)信号的定向分解。在三维中,所提出的NDFB的理想通带是基于矩形的金字塔,从原点向不同方向辐射并平铺整个频率空间。所提出的NDFB通过N-D冗余因子为N的迭代滤波器组实现了完美的重构。所提出的NDFB的角分辨率可以通过简单的展开规则调用更多级别的分解来迭代细化。通过将NDFB与新的多尺度金字塔相结合,我们提出了表面变换,可用于在多维数据中有效地捕获和表示类似表面的奇点 

原文摘要:

Abstract:

In 1992, Bamberger and Smith proposed the directional filter bank (DFB) for an efficient directional decomposition of 2-D signals. Due to the nonseparable nature of the system, extending the DFB to higher dimensions while still retaining its attractive features is a challenging and previously unsolved problem. We propose a new family of filter banks, named NDFB, that can achieve the directional decomposition of arbitrary N-dimensional (Nges2) signals with a simple and efficient tree-structured construction. In 3-D, the ideal passbands of the proposed NDFB are rectangular-based pyramids radiating out from the origin at different orientations and tiling the entire frequency space. The proposed NDFB achieves perfect reconstruction via an iterated filter bank with a redundancy factor of N in N-D. The angular resolution of the proposed NDFB can be iteratively refined by invoking more levels of decomposition through a simple expansion rule. By combining the NDFB with a new multiscale pyramid, we propose the surfacelet transform, which can be used to efficiently capture and represent surface-like singularities in multidimensional data

随着现代计算机和成像设备功能的增长,高分辨率 3D 甚至更高维度的体积数据越来越多地用于广泛的应用,包括生物医学成像、地震成像、河外天文学、计算机视觉以及视频处理和压缩。为了有效地分析和表示如此大量的数据,我们需要创建和使用来自各个工程领域的新工具,包括信号处理。在本文中,我们提出了一套新的工具,即N-维度定向滤波器组 (NDFB) 和表面,可以捕获和表示位于光滑表面上的信号奇异点。这种奇点通常在3D医学图像中观察到,其中图像大多是平滑的,除了在某些边界表面上,以及在视频信号中,移动物体在3-D空间/时间空间中雕刻出光滑的表面。

对于2-D信号,沿着平滑曲线捕获奇点的类似问题已经得到了广泛的研究。在不声称详尽无遗的情况下,我们想举几个例子,包括可操纵金字塔 [1]、定向滤波器组 [2]、二维定向小波 [2]、曲线 [3]、复杂小波 [4]、[5]、轮廓 [6]、带状 [7] 和剪切 [8]。在所有这些二维表示中,我们特别感兴趣的一种方法是定向滤波器组(DFB),它最初由班贝格和史密斯[2]提出,随后由几位作者[2]-[10]改进。德国足协通过l-级树结构分解,导致2l具有楔形频率分区的子带,如图1(a)所示。同时,DFB是一种非冗余变换,并提供完美的重建,即原始信号可以从其抽取的通道中精确重建。DFB的方向选择性和高效结构使其成为许多图像处理应用的有吸引力的候选者。通过将DFB与拉普拉斯金字塔相结合,Do和Vetterli [7]构建了轮廓,为稀疏图像表示提供了定向多分辨率变换。

📚2 运行结果

 

 部分代码:

%% We add Gaussian noise to the video sequence
disp(' ');
disp('Step 2: Add white Gaussian noise to the sequence.');
sigma = 20; % standard deviation
Xn = double(X) + sigma * randn(size(X));
r = input('Press <enter> to play the noisy sequence ...');
PlayImageSequence(uint8(Xn));

%% Surfacelet Denoising
disp(' ');
disp('Step 3: Apply surfacelet transform on the noisy sequence and hard-threshold the coefficients');
r = input('Press <enter> to continue ...');

disp(' ');
disp('Processing ...');

Pyr_mode = 1.5; % For better performance, choose Pyr_mode = 1. However, this setting requires more RAMs.
Xd = surfacelet_denoising_3D(Xn, Pyr_mode, sigma);
Xd(Xd > 255) = 255;
Xd(Xd < 0) = 0;


disp('Done!');
disp(' ');
r = input('Press <enter> to show the denoised sequence ...');
skip = 10; % To exclude the boundary effect
PlayImageSequence(uint8(Xd(:,:, skip+1 : end - skip)));

% Plot the frame-by-frame PSNR values
PSNR_surf = zeros(size(Xd, 3) - 2 * skip, 1);
for n = skip+1 : size(Xd, 3) - skip
   PSNR_surf(n - skip) = PSNR(double(X(:,:, n)), Xd(:,:,n)); 
end

figure
plot([(skip+1) : (size(Xd, 3) - skip)], PSNR_surf);
axis tight;
title(['Average PSNR = ' num2str(mean(PSNR_surf))], 'FontSize', 12);
xlabel('Frame Number', 'FontSize', 12);
ylabel('PSNR (dB)', 'FontSize', 12);

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

 Multidimensional Directional Filter Banks and Surfacelets | IEEE Journals & Magazine | IEEE Xplore

🌈4 Matlab代码实现

相关文章:

【多维定向滤波器组和表面波】表面变换:用于高效表示多维 s 的多分辨率变换(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

45.113.201.X服务器远程不上是什么原因,有什么办法解决?

45.113.201.1远程登录不上可能有多种原因导致&#xff0c;以下是一些常见的问题和解决方法&#xff1a; 网络连接问题&#xff1a;确保本地网络连接正常&#xff0c;尝试通过其他设备或网络连接服务器&#xff0c;确认是否是网络问题导致无法远程登录。 IP地址或端口错误&…...

微信小程序 地图map(电子围栏圆形和多边形)

正常情况下是没有手机上画电子围栏的&#xff0c;公共平台上我也没找到&#xff0c;所以走了一个歪点子&#xff0c;就是给地图添加点击事件&#xff0c;记录点的位置&#xff0c;在画到电子围栏上就是添加电子围栏了&#xff0c;如果只是显示电子围栏就简单了 一、多边形电子…...

Dockerfile 文件

dockerfile是一个文本文件&#xff0c;包含一条条指令&#xff0c;每条指令都会构建一层镜,一般分为四部分&#xff1a;基础镜像信息、维护者信息、镜像操作指令和容器启动时执行指令&#xff0c;#为 Dockerfile 中的注释。 docker build 基于dockerfile制作镜像 OPTIONS参数 …...

ssm学院党员管理系统源码和论文PPT

ssm学院党员管理系统源码和论文PPT002 开发工具&#xff1a;idea 数据库mysql5.7(mysql5.7最佳) 数据库链接工具&#xff1a;navcat,小海豚等 开发技术&#xff1a;java ssm tomcat8.5 选题意义、价值和目标&#xff1a; 随着鄂尔多斯应用技术学院招生规模的不断扩大&…...

文件数字水印,附一种纯文本隐写术数字水印方法

数字水印&#xff08;Digital Watermark&#xff09;是一种在数字媒体文件中嵌入隐藏信息的技术。这些数字媒体可以是图片、音频、视频或文本等。数字水印不会对原始文件造成明显的视觉或听觉变化&#xff0c;但可以在一定程度上保护知识产权&#xff0c;追踪数据来源&#xff…...

测试开发(一) 使用Vue开发chrome插件

目录 一、引言 二、功能说明 三、【配置】操作演示 四、【请求拦截】演示 不断访问博客&#x...

游戏行业实战案例 4 :在线时长分析

【面试题】某游戏数据后台设有「登录日志」和「登出日志」两张表。 「登录日志」记录各玩家的登录时间和登录时的角色等级。 「登出日志」记录各玩家的登出时间和登出时的角色等级。 其中&#xff0c;「角色id」字段唯一识别玩家。 游戏开服前两天&#xff08; 2022-08-13 至 …...

记一次图片压缩引发的生产问题

省流&#xff1a; 死循环导致没有commit&#xff08;提交事务&#xff09;&#xff0c;transaction一直没有结束。 正文&#xff1a; 调用接口报错&#xff1a; jdbc报错&#xff1a; MySQLTransactionRollbackException: Lock wait timeout exceeded; try restarting tran…...

mybatis-flex探索

mybatis古今未来 最近无意之中发现了一个非常棒的持久层框架mybatis-flex&#xff0c;迫不及待研究了一下 发现简直就是我的梦中情框&#xff0c;之前写ibatis&#xff0c;后来写mybatis&#xff0c;接着写mybatis-plus&#xff0c;接着研究mybatis-flex ibatis ibatis是apa…...

用ClickHouse 文件表引擎快速查询分析文件数据

有时我们需要快速查询分析文件数据&#xff0c;正常流程需要在数据库中创建表&#xff0c;然后利用工具或编码导入数据&#xff0c;这时才能在数据库中查询分析。利用ClickHouse文件引擎可以快速查询文件数据。本文首先介绍ClickHouse文件引擎&#xff0c;然后介绍如何快速实现…...

esp8266httpclient_get_post使用

esp8266httpclient_get_post使用 #include<ESP8266WiFi.h> #include <ESP8266HTTPClient.h>//const char *ssid "AxxxIFI"; const char *password "xxxs879xxx68";const char* ssid "IT-nxxxang";const char* URL "http://…...

【Spring】创建一个Spring项目与Bean对象的存储

目录 一、创建Spring项目 1、创建Maven项目 2、配置maven国内源 3、引入spring依赖 4、添加启动类 二、将Bean对象存储到Spring&#xff08;IoC容器&#xff09; 1、创建Bean对象 2、将Bean存储到spring&#xff08;容器&#xff09;中 3、获取Bean对象 3.1、Applicatio…...

Docker的入门与使用

什么是Docker&#xff1f; docker官网 简介与概述 Docker 是一个开源的应用容器引擎&#xff0c;基于 Go 语言 并遵从 Apache2.0 协议开源。 Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级、可移植的容器中&#xff0c;然后发布到任何流行的 Linux 机器上&#x…...

Smart HTML Elements 16.1 Crack

Smart HTML Elements 是一个现代 Vanilla JS 和 ES6 库以及下一代前端框架。企业级 Web 组件包括辅助功能&#xff08;WAI-ARIA、第 508 节/WCAG 合规性&#xff09;、本地化、从右到左键盘导航和主题。与 Angular、ReactJS、Vue.js、Bootstrap、Meteor 和任何其他框架集成。 智…...

[分享]STM32G070 串口 乱码 解决方法

硬件 NUCLEO-G070RB 工具 cubemx 解决方法 7bit 改为 8bit printf 配置方法 添加头文件 #include <stdio.h> 添加重定向代码 #ifdef __GNUC__#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)#else#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)#endi…...

[代码案例]学会python读写各类文件的操作(excel,txt,mat)

简介 python读写三类文件 excel文件 txt文件 mat文件 代码 """Description: python 读写各类文件 操作 """ import scipy as scipy from scipy.io import loadmat import xlwt import xlrd 读写excel文件workbook xlrd.open_workbook(test1.…...

【LeetCode】练习习题集【4月 - 7 月】

LEETCODE习题集【4月-7月总结】 简单 数组部分 1.重复数 题目&#xff1a; 在一个长度u为 n 的数组 nums 里的所有数字都在 0&#xff5e;n-1 的范围内。数组中某些数字是重复的&#xff0c;但不知道有几个数字重复了&#xff0c;也不知道每个数字重复了几次。请找出数组中…...

C# 子类强制转换为父类异常,引出的C#Dll加载机制,以及同类名同命名空间同dll程序集在C#中是否为同一个类的研究。

已知&#xff0c;子类B继承自父类A&#xff0c;但是在代码运行时&#xff0c;B类强制转换为A类&#xff0c;却报代码转换异常。 很奇怪的问题吧&#xff0c;不过这个也是难得机会&#xff0c;去研究C#运行的底层原理。 下面是报错的代码片段。 string className _shapeRefle…...

Go语言进阶

个人笔记&#xff0c;大量摘自Go语言高级编程、Go|Dave Cheney等 更新 go get -u all 在非go目录运行go install golang.org/x/tools/goplslatest更新go tools&#xff1a;在go目录运行go get -u golang.org/x/tools/...&#xff0c;会更新bin目录下的应用&#xff1b; 运行…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

Mac软件卸载指南,简单易懂!

刚和Adobe分手&#xff0c;它却总在Library里给你写"回忆录"&#xff1f;卸载的Final Cut Pro像电子幽灵般阴魂不散&#xff1f;总是会有残留文件&#xff0c;别慌&#xff01;这份Mac软件卸载指南&#xff0c;将用最硬核的方式教你"数字分手术"&#xff0…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

力扣热题100 k个一组反转链表题解

题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案

在大数据时代&#xff0c;海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构&#xff0c;在处理大规模数据抓取任务时展现出强大的能力。然而&#xff0c;随着业务规模的不断扩大和数据抓取需求的日益复杂&#xff0c;传统…...

实战三:开发网页端界面完成黑白视频转为彩色视频

​一、需求描述 设计一个简单的视频上色应用&#xff0c;用户可以通过网页界面上传黑白视频&#xff0c;系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观&#xff0c;不需要了解技术细节。 效果图 ​二、实现思路 总体思路&#xff1a; 用户通过Gradio界面上…...