OPENCV C++(十)gramm矫正+直方图均衡化
两者都是只对单通道使用,对多通道的话 就需要分离通道处理再合并通道

两种方法,第一个要运算次数太多了,第二个只需要查表
伽马矫正函数,这里用第二种方法,且写法有点高级
int gammaCorrection(cv::Mat srcMat, cv::Mat& dstMat, float gamma) {//建立查询表unsigned char lut[256];for (int i = 0; i < 256; i++){//saturate_cast,防止像素值溢出,如果值<0,则返回0,如果大于255,则返回255lut[i] = saturate_cast<uchar>(pow((float)(i / 255.0f), gamma) * 255.0f);}srcMat.copyTo(dstMat);MatIterator_<uchar> it, end;for (it = dstMat.begin<uchar>(), end = dstMat.end<uchar>(); it != end; it++) {*it = lut[(*it)];}return 0;}
就是建立了查找表,然后计算查找表,再遍历像素直接赋值查找表,就不用计算了。
int readType = 0;Mat srcMat = imread("kjy.jpg");resize(srcMat, srcMat,Size(srcMat.rows*0.5, srcMat.rows * 0.5));cv::Mat dstMat;float gamma = GAMMA_FACTOR;if (srcMat.type() == CV_8UC1){gammaCorrection(srcMat, dstMat, gamma);}else {Mat channel[3];Mat out[3];float hist[3][256];//通道分离split(srcMat, channel);for (int i = 0; i < 3; i++) {gammaCorrection(channel[i], out[i], gamma);}merge(out, 3, dstMat);}imshow("src", srcMat);imshow("dst", dstMat);waitKey(0);destroyAllWindows();
这就是grammar矫正的代码
直方图均衡化(只对单通道有效果)多通道的话先分离通道再合并一样的
equalizeHist(srcMat, equalizeHistMat);
计算直方图函数
int calcIntenHist(const cv::Mat src, float* dstHist)
{//输入必为单通道图if (src.type() != CV_8UC1) {return -1;}memset(dstHist, 0, sizeof(float) * 256);int height = src.rows;int width = src.cols;//指针遍历for (int k = 0; k < height; k++){// 获取第k行的首地址const uchar* inData = src.ptr<uchar>(k);//处理每个像素for (int i = 0; i < width; i++){int gray = inData[i];dstHist[gray]++;}}//直方图归一化float norm = height * width;for (int n = 0; n < 256; n++) {dstHist[n] = dstHist[n] / norm;}return 0;
}
还进行了归一化
直方图画画函数
int drawIntenHist(cv::Mat& histMat, float* srcHist, int bin_width, int bin_heght)
{histMat.create(bin_heght, 256 * bin_width, CV_8UC3);histMat = Scalar(255, 255, 255);float maxVal = *std::max_element(srcHist, srcHist + 256);for (int i = 0; i < 256; i++) {Rect binRect;binRect.x = i * bin_width;float height_i = (float)bin_heght * srcHist[i] / maxVal;binRect.height = (int)height_i;binRect.y = bin_heght - binRect.height;binRect.width = bin_width;rectangle(histMat, binRect, CV_RGB(255, 0, 0), -1);}return 0;
}
float height_i = (float)bin_heght * srcHist[i] / maxVal;是防止不够高度大小 要进行的高度归一
直方图均衡化的完整代码:
float srcHist[256];float dstHist[256];Mat dstHistMat;Mat srcHistMat;Mat histMat[3];Mat equalizeHistMat;cv::Mat dstMat1;int bin_width = 2;int bin_heigth = 100;if (srcMat.type() == CV_8UC1) {equalizeHist(srcMat, equalizeHistMat);imshow("src", srcMat);imshow("equalizeHistMat", equalizeHistMat);waitKey(0);destroyAllWindows();calcIntenHist(dstMat1, dstHist);drawIntenHist(dstHistMat, dstHist, 3, 100);imshow("dstMat hist", dstHistMat);calcIntenHist(srcMat, srcHist);drawIntenHist(srcHistMat, srcHist, 3, 100);imshow("srcMat hist", srcHistMat);waitKey(0);destroyAllWindows();}else{Mat channel[3];Mat out[3];float hist[3][256];split(srcMat, channel);for (int i = 0; i < 3; i++) {equalizeHist(channel[i], out[i]);calcIntenHist(out[i], hist[i]);drawIntenHist(histMat[i], hist[i], bin_width, bin_heigth);//按照channel编号命名窗口stringstream ss;ss << i;string histWindow = "Hist of chanel " + ss.str();string matWindow = "Image of chanel " + ss.str();imshow(histWindow, histMat[i]);imshow(matWindow, out[i]);}merge(out, 3, dstMat1);cv::Mat grayMat;cv::Mat graydstMat;cvtColor(srcMat, grayMat, CV_BGR2GRAY);cvtColor(dstMat1, graydstMat, CV_BGR2GRAY);//计算并绘制直方图calcIntenHist(graydstMat, dstHist);drawIntenHist(dstHistMat, dstHist, 3, 100);imshow("dstMat", dstMat1);imshow("dstMat hist", dstHistMat);calcIntenHist(grayMat, srcHist);drawIntenHist(srcHistMat, srcHist, 3, 100);imshow("srcMat hist", srcHistMat);imshow("srcMat", srcMat);waitKey(0);destroyAllWindows();}return 0;}
相关文章:
OPENCV C++(十)gramm矫正+直方图均衡化
两者都是只对单通道使用,对多通道的话 就需要分离通道处理再合并通道 两种方法,第一个要运算次数太多了,第二个只需要查表 伽马矫正函数,这里用第二种方法,且写法有点高级 int gammaCorrection(cv::Mat srcMat, cv::…...
并发——ThreadPoolExecutor 类简单介绍
文章目录 1 ThreadPoolExecutor 类分析2 推荐使用 ThreadPoolExecutor 构造函数创建线程池 线程池实现类 ThreadPoolExecutor 是 Executor 框架最核心的类。 1 ThreadPoolExecutor 类分析 ThreadPoolExecutor 类中提供的四个构造方法。我们来看最长的那个,其余三个…...
SharePoint 审核和监控工具
审核在顺利的 SharePoint 管理中起着重要作用,尤其是在满足法规遵从性和取证要求方面。为避免数据泄露,必须了解谁来自哪个组访问了哪个文档,以及谁创建或删除了网站或网站集。 审核 SharePoint 服务器 SharePoint采用率的提高导致企业在其…...
java+springboot+mysql法律咨询网
项目介绍: 使用javassmmysql开发的法律咨询网,系统包含超级管理员,系统管理员、用户角色,功能如下: 用户:主要是前台功能使用,包括注册、登录;查看法律领域;法律法规&a…...
无涯教程-Perl - getservbyport函数
描述 此功能转换协议PROTO的服务编号PORT,在标量context中返回服务名称,并在列表context中返回名称和相关信息- ($name,$aliases,$port_number,$protocol_name) 该调用基于/etc/services文件返回这些值。 语法 以下是此函数的简单语法- getservbyport PORT, PROTO返回值 …...
iOS开发-JsonModel的学习及使用
IOS JsonModel的学习及使用 当我们从服务端获取到json数据后的时候,我们需要在界面上展示或者保存起来,下面来看下直接通过NSDictionary取出数据的情况。 NSDictionary直接取出数据的诟病。 NSString *name [self.responseObj objectForKey:"nam…...
jquery 遍历所有元素
要遍历所有元素,您可以使用 jQuery 的 .each() 方法。以下是使用 .each() 方法来遍历所有元素的示例代码: $(selector).each(function() {// 在这里编写处理每个元素的代码// 使用 $(this) 来访问当前迭代的元素 });在上面的代码中,您需要将…...
Tik Tok跨境电商新风向,跨境卖家该如何布局?
TikTok作为优质的中国出海企业,近年来在电商业务上的布局也越来越广泛,除了之前的内容电商,TikTok Shop也上线了商城业务,补全了“人找货”的场景,为卖家增加了在直播、短视频之外的新流量来源。 TikTok美国小店现状 …...
OR36 链表的回文结构 题解
题目描述:链表的回文结构_牛客题霸_牛客网 (nowcoder.com) 对于一个链表,请设计一个时间复杂度为O(n),额外空间复杂度为O(1)的算法,判断其是否为回文结构。 给定一个链表的头指针A,请返回一个bool值,代表其是否为回文结…...
“去没有天花板的地方” | 小红书用户情绪数据
最近,话题#人就要待在没有天花板的地方#社媒讨论度居高不下,小红书相关话题近90天互动量超百万。 生活的无常之外,越来越多人渴望与大自然更深层次的链接,以此寻找情绪的不同出口。或许,剖析这些情绪的生成机理&#x…...
Java文件操作(遍历目录中的文件,找到并删除有指定关键字的文件)
对于通过java对文件继续读取和写入的操作推荐看读取文件和写入文件操作 题目 扫描指定目录中的文件,并找到名称中包含指定字符的所有普通文件(不包括目录),并后续询问用户是否要删除该文件 题目分析 实际上题目就要求我们对一个…...
MySQL单表查询
单表查询 素材: 表名:worker-- 表中字段均为中文,比如 部门号 工资 职工号 参加工作 等 CREATE TABLE worker ( 部门号 int(11) NOT NULL, 职工号 int(11) NOT NULL, 工作时间 date NOT NULL, 工资 float(8,2) NOT NULL, 政治面貌 varch…...
苹果正在测试新款Mac mini:搭载M3芯片 配备24GB大内存
据悉苹果目前正在测试新的Mac机型,亮点是采用最新的M3芯片。 据报道,首款搭载M3芯片的设备应该是13英寸的MacBook Pro和重新设计的MacBook Air,Mac mini机型并不在名单上。 M3和M2同样拥有最多8个核心,分别为4个性能核和4个能效核…...
redis的缓存更新策略以及如何保证redis与数据库的数据一致性
redis的缓存更新策略有这么几种: 1、由应用直接和redis以及数据库相连接: 查询数据时,应用去redis中查询,查不到的话再由应用去数据库中查询,并将查询结果放在redis; 更新数据时ÿ…...
k8s--使用cornJob定时执行sql文件
CronJob apiVersion: batch/v1beta1 kind: CronJob metadata:name: hello spec:schedule: "0 * * * *"jobTemplate:spec:template:spec:containers:- name: postgres-alpineimage: xxxximagePullPolicy: IfNotPresentcommand:- psql- -h- 数据库服务地址- -d- 数据库…...
Qt事件过滤器
1 介绍 事件过滤器是一种机制,当某个QObject没有所需要的事件功能时,可将其委托给其它QObject,通过eventFilter成员函数来过滤实现功能。 2 主要构成 委托: ui->QObject1->installEventFilter(QObject2); eventFilter声明 …...
Java基础集合框架学习(上)
文章目录 初识基础框架为什么使用集合框架集合框架的继承关系ArrayList入门案例单元测试和增删改查单元测试的注意事项LinkedList入门案例ArrayList底层是数组LinkedList底层是链表ArrayList和LinkedList选型ArrayList存放DOG对象 初识基础框架 Java基础集合框架是Java编程语言…...
北京多铁克FPGA笔试题目
1、使用D触发器来实现二分频 2、序列检测器,检测101,输出1,其余情况输出0 module Detect_101(input clk,input rst_n,input data, //输入的序列output reg flag_101 //检测到101序列的输出标志 );parameter S0 2d0;S1 2d1;S2 2d2;S4 …...
从初学者的角度来理解指针常量和常量指针
重新理解指针常量,常量指针 应用 我先提一个问题:知道指针常量,常量指针存在的作用是什么吗? 先了解它们存在的作用再去理解它们,或许更轻松些。 比如配置文件读取:在许多工程中,配置文件用于…...
C# OpenCvSharp 去水印 图像修复
效果 项目 VS2022.net4.8OpenCvSharp4 代码 using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.IO; using System.Linq; using System.Security.Cryptography; using System.Text; usi…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...
令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...
3-11单元格区域边界定位(End属性)学习笔记
返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...
使用Spring AI和MCP协议构建图片搜索服务
目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...
安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...
【从零学习JVM|第三篇】类的生命周期(高频面试题)
前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 …...
mac 安装homebrew (nvm 及git)
mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用: 方法一:使用 Homebrew 安装 Git(推荐) 步骤如下:打开终端(Terminal.app) 1.安装 Homebrew…...
逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...
