langchain-ChatGLM源码阅读:参数设置
文章目录
- 上下文关联
- 对话轮数
- 向量匹配 top k
- 控制生成质量的参数
- 参数设置心得
上下文关联
上下文关联相关参数:
- 知识相关度阈值score_threshold
- 内容条数k
- 是否启用上下文关联chunk_conent
- 上下文最大长度chunk_size
其主要作用是在所在文档中扩展与当前query相似度较高的知识库的内容,作为相关信息与query按照prompt规则组合后作为输入获得模型的回答。

- 获取查询句query嵌入:
faiss.py
def similarity_search_with_score(self, query: str, k: int = 4) -> List[Tuple[Document, float]]:"""Return docs most similar to query.Args:query: Text to look up documents similar to.k: Number of Documents to return. Defaults to 4.Returns:List of Documents most similar to the query and score for each"""embedding = self.embedding_function(query)docs = self.similarity_search_with_score_by_vector(embedding, k)return docs
- 上下文生成:
MyFAISS.py
def seperate_list(self, ls: List[int]) -> List[List[int]]:# TODO: 增加是否属于同一文档的判断lists = []ls1 = [ls[0]]for i in range(1, len(ls)):if ls[i - 1] + 1 == ls[i]:ls1.append(ls[i])else:lists.append(ls1)ls1 = [ls[i]]lists.append(ls1)return listsdef similarity_search_with_score_by_vector(self, embedding: List[float], k: int = 4) -> List[Document]:faiss = dependable_faiss_import()# (1,1024)vector = np.array([embedding], dtype=np.float32)# 默认FALSEif self._normalize_L2:faiss.normalize_L2(vector)# shape均为(1, k),这步获取与query有top-k相似度的知识库scores, indices = self.index.search(vector, k)docs = []id_set = set()store_len = len(self.index_to_docstore_id)rearrange_id_list = False# 遍历找到的k个最相似知识库的索引# k是第一次的筛选条件,score是第二次的筛选条件for j, i in enumerate(indices[0]):if i == -1 or 0 < self.score_threshold < scores[0][j]:# This happens when not enough docs are returned.continueif i in self.index_to_docstore_id:_id = self.index_to_docstore_id[i]# 执行接下来的操作else:continue# index→id→contentdoc = self.docstore.search(_id)if (not self.chunk_conent) or ("context_expand" in doc.metadata and not doc.metadata["context_expand"]):# 匹配出的文本如果不需要扩展上下文则执行如下代码if not isinstance(doc, Document):raise ValueError(f"Could not find document for id {_id}, got {doc}")doc.metadata["score"] = int(scores[0][j])docs.append(doc)continue# 其实存的都是indexid_set.add(i)docs_len = len(doc.page_content)# 跟外部变量定义的k重名了,烂# 一个知识库是分句后得到的一句话,i是当前知识库在总知识库中的位置,store_len是总知识库大小# 所以k说的是扩充上下文时最多能跨多少个知识库for k in range(1, max(i, store_len - i)):break_flag = Falseif "context_expand_method" in doc.metadata and doc.metadata["context_expand_method"] == "forward":expand_range = [i + k]elif "context_expand_method" in doc.metadata and doc.metadata["context_expand_method"] == "backward":expand_range = [i - k]else:# i=4922, k=1 → [4923, 4921]expand_range = [i + k, i - k]for l in expand_range:# 确保扩展上下文时不会造成重复if l not in id_set and 0 <= l < len(self.index_to_docstore_id):_id0 = self.index_to_docstore_id[l]doc0 = self.docstore.search(_id0)# 如果当前字数大于250或者是知识库跨了文件,扩充上下文过程终止# 这一句有些问题,有一端跨文件就终止,应该是两端同时跨才终止才对if docs_len + len(doc0.page_content) > self.chunk_size or doc0.metadata["source"] != \doc.metadata["source"]:break_flag = Truebreakelif doc0.metadata["source"] == doc.metadata["source"]:docs_len += len(doc0.page_content)id_set.add(l)rearrange_id_list = Trueif break_flag:break# 如果没有扩展上下文(不需要或是不能)if (not self.chunk_conent) or (not rearrange_id_list):return docsif len(id_set) == 0 and self.score_threshold > 0:return []id_list = sorted(list(id_set))# 连续必然属于同一文档,但不连续也可能在同一文档# 返回二级列表,第一级是连续的index列表,第二级是具体indexid_lists = self.seperate_list(id_list)for id_seq in id_lists:for id in id_seq:if id == id_seq[0]:_id = self.index_to_docstore_id[id]# doc = self.docstore.search(_id)doc = copy.deepcopy(self.docstore.search(_id))else:_id0 = self.index_to_docstore_id[id]doc0 = self.docstore.search(_id0)doc.page_content += " " + doc0.page_contentif not isinstance(doc, Document):raise ValueError(f"Could not find document for id {_id}, got {doc}")# indices为相关文件的索引# 因为可能会将多个连续的id合并,因此需要将同一seq内所有位于top-k的知识库的分数取最小值作为seq对应的分数doc_score = min([scores[0][id] for id in [indices[0].tolist().index(i) for i in id_seq if i in indices[0]]])doc.metadata["score"] = int(doc_score)docs.append(doc)# 注意这里docs没有按相似度排序,可以自行加个sortreturn docs
- prompt生成:
local_doc_qa.py
def get_knowledge_based_answer(self, query, vs_path, chat_history=[], streaming: bool = STREAMING):related_docs_with_score = vector_store.similarity_search_with_score(query, k=self.top_k)torch_gc()if len(related_docs_with_score) > 0:prompt = generate_prompt(related_docs_with_score, query)else:prompt = queryanswer_result_stream_result = self.llm_model_chain({"prompt": prompt, "history": chat_history, "streaming": streaming})def generate_prompt(related_docs: List[str],query: str,prompt_template: str = PROMPT_TEMPLATE, ) -> str:context = "\n".join([doc.page_content for doc in related_docs])prompt = prompt_template.replace("{question}", query).replace("{context}", context)return prompt
对话轮数

其实就是要存多少历史记录,如果为0的话就是在执行当前对话时不考虑历史问答
- 模型内部调用时使用,以chatglm为例:
chatglm_llm.py
def _generate_answer(self,inputs: Dict[str, Any],run_manager: Optional[CallbackManagerForChainRun] = None,generate_with_callback: AnswerResultStream = None) -> None:history = inputs[self.history_key]streaming = inputs[self.streaming_key]prompt = inputs[self.prompt_key]print(f"__call:{prompt}")# Create the StoppingCriteriaList with the stopping stringsstopping_criteria_list = transformers.StoppingCriteriaList()# 定义模型stopping_criteria 队列,在每次响应时将 torch.LongTensor, torch.FloatTensor同步到AnswerResultlistenerQueue = AnswerResultQueueSentinelTokenListenerQueue()stopping_criteria_list.append(listenerQueue)if streaming:history += [[]]for inum, (stream_resp, _) in enumerate(self.checkPoint.model.stream_chat(self.checkPoint.tokenizer,prompt,# 为0时history返回[]history=history[-self.history_len:-1] if self.history_len > 0 else [],max_length=self.max_token,temperature=self.temperature,top_p=self.top_p,top_k=self.top_k,stopping_criteria=stopping_criteria_list)):
向量匹配 top k
虽然放在了模型配置那一页,但实际上还是用来控制上下文关联里面的内容条数k的,不知道为什么写了两遍。。。

控制生成质量的参数
这些参数没有在前端显式地给出,而是写死在了模型定义里
- 模型定义,以chatglm为例:
chatglm_llm.py
class ChatGLMLLMChain(BaseAnswer, Chain, ABC):max_token: int = 10000temperature: float = 0.01# 相关度top_p = 0.4# 候选词数量top_k = 10checkPoint: LoaderCheckPoint = None# history = []history_len: int = 10
参数设置心得
- score_threshold和k设太小会找不到问题对应的原文件,太大找到一堆不相关的
- chunk_size设太小不能在原文件里找到问题对应的原文,太大无法有效归纳出答案
- temperature和top_p默认值下生成的答案基本固定,但也很死板;过大的temperature导致回答的事实不稳定;过大的top_p导致回答的语言风格不稳定;调整top_k没发现结果有什么变化
相关文章:
langchain-ChatGLM源码阅读:参数设置
文章目录 上下文关联对话轮数向量匹配 top k控制生成质量的参数参数设置心得 上下文关联 上下文关联相关参数: 知识相关度阈值score_threshold内容条数k是否启用上下文关联chunk_conent上下文最大长度chunk_size 其主要作用是在所在文档中扩展与当前query相似度较高…...
什么是Java中的工厂模式?
工厂模式(Factory Pattern)是一种常见的设计模式,它可以帮助我们简化对象创建的过程,将对象的创建与使用分离,提高代码的可维护性和可扩展性。在Java中,工厂模式通常分为简单工厂模式(Simple Fa…...
数据库--MySQL
一、什么是范式? 范式是数据库设计时遵循的一种规范,不同的规范要求遵循不同的范式。 最常用的三大范式 第一范式(1NF):属性不可分割,即每个属性都是不可分割的原子项。(实体的属性即表中的列) 第二范式(2NF):满足…...
浏览器多管闲事之跨域
年少时的梦想就是买一台小霸王游戏机 当时的宣传语就是小霸王其乐无穷~。 大些了,攒够了零花钱,在家长的带领下终于买到了 那一刻我感觉就是最幸福的人 风都是甜的! 哪成想... 刚到家就被家长扣下了 “”禁止未成年人玩游戏机 (问过卖家了&a…...
那为什么 async 函数最终返回的是一个新的 Promise?
async 函数的设计就是这样的:无论你返回什么值,它都会自动被包装为一个 Promise 对象。这就是为什么说 async 函数最终返回的是一个新的 Promise 对象。 当你在 async 函数中使用 return 语句返回一个值时,这个值会成为最终返回的 Promise 对…...
Java的泛型
泛型 泛型又称参数化类型,是Jdk5.0出现的新特性,解决数据类型的安全性问题 在类声明或实例化时只要指定好需要的具体的类型即可 Java泛型可以保证如果程序在编译时没有发出警告,运行时就不会产生ClassCastException异常。同时,代码更加简洁…...
pve和openwrt以及我的电脑中网络的关系和互通组网
情况1 一台主机 有4个口,分别eth0,eth1,eth2,eth3 pve有管理口 这个情况下 ,没有openwrt 直接电脑和pve管理口连在一起就能进pve管理界面 情况2 假设pve 的管理口味eth0 openwrt中桥接的是eth0 eth1 eth2 那么电脑连接eth3或者pve管理口设置eth3…...
TypeScript学习笔记
1.ts和js的区别 2. ts的优势 3. ts下载后报错解决方法 报错: PS C:\Users\\Desktop> tsc -v tsc : 无法加载文件 C:\Users\32173\AppData\Roaming\npm\tsc.ps1,因为在此系统上禁止运行脚本。有关详细信息,请参阅 https:/ go.microsoft.com/fwlink/?…...
MATLAB实现两组数据的延时对齐效果
博主在某次实验中,相同的实验条件下分别采集了两组数据,发现两组数据存在一个延时,如下图所示: 本文记录消除这个延时,实现相同数据状态的对齐效果,采用MATLAB自带的xcorr函数实现,具体步骤如下…...
基于Spring Boot的网络在线学习网站的设计与实现(Java+spring boot+MySQL)
获取源码或者论文请私信博主 演示视频: 基于Spring Boot的网络在线学习网站的设计与实现(Javaspring bootMySQL) 使用技术: 前端:html css javascript jQuery ajax thymeleaf 微信小程序 后端:Java spri…...
Is a directory: ‘outs//.ipynb_checkpoints‘
提示out/文件夹的.ipynp_chechpoints是一个文件夹,但是打开文件夹却没有看到,可以得知他是一个隐藏文件夹,进入outs/文件夹,使用 ls -a可以看到所有文件 果然出现这个文件夹,但是我们这个outs/文件夹存放的是图片&am…...
PintOS lab2 User Programs 实验记录
Background 大体流程如下图所示,显然这时候start_process无法被调度到。 然后start_process 里面load .out文件 (.o文件就是对象文件,是可重定向文件的一种,通常以ELF格式保存,里面包含了对各个函数的入口标记,描述,…...
『CV学习笔记』docker和nvidia-docker离线安装
docker和nvidia-docker离线安装 文章目录 1. docker的deb包下载链接2. nvidia-docker 的deb包下载3. 重启 docker4. 检验安装5. Docker容器命令行不支持Tab键命令自动补全6. 参考文献这里是ubuntu操作系统, 如果是其他的操作系统,则需要安装对应的deb包1. docker的deb包下载链…...
使用JavaScript实现页面滑动切换效果
使用JavaScript实现页面滑动切换效果 在现代Web页面设计中,页面滑动切换效果已经成为了一种常见的设计要求,能够提升用户体验,增加页面的交互性。本文将通过JavaScript来实现这一效果。 首先,我们需要在HTML中添加一些基础结构和…...
react中的formik如何使用
介绍: Formik 是一个用于处理表单状态和验证的 React 库。它提供了一种简化和统一的方式来处理复杂的表单逻辑,包括表单值的管理、表单验证、表单提交和错误处理等。 使用 安装 Formik 和 Yup(用于表单验证): // ba…...
MYSQL储存过程
一、概念及形式 存储过程就是作为可执行对象存放在数据库中的一个或多个SQL命令,通俗来讲存储过程其实就是能完成一定操作的一组SQL语句。 1、自定义语句结束符 DELIMITER $$ 2、创建 使用CREATE动作及PROCEDURE关键字进行过程创建,一般格式为&…...
fastadmin、vue、react图标库适用于多种框架
在二开fastadmin中,在写vue以及react时,侧边导航栏以及按钮中常常需要很多图标,那么这些图标应该去哪里得到呢,在这里给大家一个链接,这里有丰富的图标库,可以找到自己想要的进行使用。 点击下方链接&…...
篇七:桥接模式:连接抽象和实现
篇七:“桥接模式:连接抽象和实现” 开始本篇文章之前先推荐一个好用的学习工具,AIRIght,借助于AI助手工具,学习事半功倍。欢迎访问:http://airight.fun/。 另外有2本不错的关于设计模式的资料,…...
STL容器适配器 -- stack和queue(使用+实现)(C++)
stack和queue stackstack的介绍stack的使用stack的实现 queuequeue的介绍queue的使用queue的实现 deque简单介绍deque(双端队列)双开口连续打引号的原因 deque底层结构deque的迭代器封装结构(复杂)deque的优缺点 栈和队列数据结构…...
K8s operator从0到1实战
Operator基础知识 Kubernetes Operator是一种用于管理和扩展Kubernetes应用程序的模式和工具。它们是一种自定义的Kubernetes控制器,可以根据特定的应用程序需求和业务逻辑扩展Kubernetes功能。 Kubernetes Operator基于Kubernetes的控制器模式,通过自…...
uniapp 对接腾讯云IM群组成员管理(增删改查)
UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...
网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...
【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...
