灰度非线性变换之c++实现(qt + 不调包)
本章介绍灰度非线性变换,具体内容包括:对数变换、幂次变换、指数变换。他们的共同特点是使用非线性变换关系式进行图像变换。
1.灰度对数变换
变换公式:y = a + log(1+x) / b,其中,a控制曲线的垂直移量;b为正常数,控制曲线的弯曲程度。其取值对函数曲线的影响见下图:

对数变换实现了图像灰度扩展和压缩的功能,它扩展低灰度值而压缩高灰度值,让图像的灰度分布更加符合人的视觉特征。
代码实现(代码是我以前自学图像处理时写的,代码很粗糙没做任何优化,但很好理解)
此代码中“origiin”一般为灰度图片,彩色图片转灰度图片,可参考我的一篇博客:彩色图转灰度图之c++实现(qt + 不调包)
/*对数变化函数*/
/*a1为控制参数,表示曲线的上下偏移量 b1为控制参数,表示曲线的弯曲程度*/
QImage* MainWindow::LogTrans(QImage* origiin,float a1, float b1)
{QImage* newImage = new QImage(origiin->width(), origiin->height(), QImage::Format_ARGB32);QColor oldColor;int r, g, b;for(int y = 0; y < newImage->height(); y++){for(int x = 0; x < newImage->width(); x++){oldColor = QColor(origiin->pixel(x,y));r = (log(oldColor.red() + 1.0))/b1+ a1;g = (log(oldColor.green() + 1.0))/b1+ a1;b = (log(oldColor.blue() + 1.0))/b1+ a1;r = qBound(0, r, 255);g = qBound(0, g, 255);b = qBound(0, b, 255);newImage->setPixel(x, y, qRgb(r, g, b));}}return newImage;
}
2.灰度幂次变换
变换公式:,其中c和r都是为正数,当r=1的时候幂次变换变成线性变换,由于图像的像素值范围在0-255之间,所以一般公式会变换成:
,当r<1的时候,变换函数曲线在正比函数上方,此时扩展低灰度级,压缩高灰度级,使图像变亮;当r>1的时候,变换函数曲线在正比函数下方,此时扩展高灰度级,压缩低灰度级,使图像变暗。其取值对函数曲线的影响见下图:

灰度幂次变换一般用于显示设备的伽马校正中。
代码实现(代码是我以前自学图像处理时写的,代码很粗糙没做任何优化,但很好理解)
此代码中“origiin”一般为灰度图片,彩色图片转灰度图片,可参考我的一篇博客:彩色图转灰度图之c++实现(qt + 不调包)
/*幂次变化函数*/
/*b1为控制参数,表示曲线的上下偏移量 c1为控制参数,表示曲线的弯曲程度 r1为控制参数,表示函数的幂次*/
QImage* MainWindow::PowerTrans(QImage* origiin,float b1, float c1, float r1)
{QImage* newImage = new QImage(origiin->width(), origiin->height(), QImage::Format_ARGB32);QColor oldColor;int r, g, b;for(int y = 0; y < newImage->height(); y++){for(int x = 0; x < newImage->width(); x++){oldColor = QColor(origiin->pixel(x,y));r = c1 * pow(oldColor.red() /255.0, r1) * 255 + b1;g = c1 * pow(oldColor.green() /255.0, r1) * 255 + b1;b = c1* pow(oldColor.blue() /255.0, r1) * 255 + b1;r = qBound(0, r, 255);g = qBound(0, g, 255);b = qBound(0, b, 255);newImage->setPixel(x, y, qRgb(r, g, b));}}return newImage;
}
3.灰度指数变换
变换公式:,其中,参数b、c控制曲线形状,参数a控制曲线的左右位置。指数变换的曲线可见下图:

指数变换的作用是扩展图像的高灰度级,压缩低灰度级。虽然幂次变换也有这个功能,但是图像经过指数变换后对比度更高,高灰度级也被扩展到了更宽的范围。
代码实现(代码是我以前自学图像处理时写的,代码很粗糙没做任何优化,但很好理解)
此代码中“origiin”一般为灰度图片,彩色图片转灰度图片,可参考我的一篇博客:彩色图转灰度图之c++实现(qt + 不调包)
/*指数变化函数*/
/*a1为控制参数,表示曲线的左右偏移量 b,c为控制参赛,表示曲线的弯曲程度*/
QImage* MainWindow::ExpTrans(QImage* origiin,float a1, float b1, float c1)
{QImage* newImage = new QImage(origiin->width(), origiin->height(), QImage::Format_ARGB32);QColor oldColor;int r, g, b;for(int y = 0; y < newImage->height(); y++){for(int x = 0; x < newImage->width(); x++){oldColor = QColor(origiin->pixel(x,y));r = pow(b1, c1*(oldColor.red()-a1) ) - 1;g = pow(b1, c1*(oldColor.green()-a1)) - 1;b = pow(b1, c1*(oldColor.blue() -a1)) - 1;r = qBound(0, r, 255);g = qBound(0, g, 255);b = qBound(0, b, 255);newImage->setPixel(x, y, qRgb(r, g, b));}}return newImage;
}
4.参考资料:
数字图像处理——技术详解与Visual C++实践(左飞等著),写代码与写博客的时间相差两年,至于还参考其他的资料不,我已经忘记了,如若需要,我可以补上去
相关文章:
灰度非线性变换之c++实现(qt + 不调包)
本章介绍灰度非线性变换,具体内容包括:对数变换、幂次变换、指数变换。他们的共同特点是使用非线性变换关系式进行图像变换。 1.灰度对数变换 变换公式:y a log(1x) / b,其中,a控制曲线的垂直移量;b为正…...
轻量级Web框架Flask
Flask-SQLAlchemy MySQL是免费开源软件,大家可以自行搜索其官网(https://www.MySQL.com/downloads/) 测试MySQL是否安装成功 在所有程序中,找到MySQL→MySQL Server 5.6下面的命令行工具,然后单击输入密码后回车&am…...
【gridsample】地平线如何支持gridsample算子
文章目录 1. grid_sample算子功能解析1.1 理论介绍1.2 代码分析1.2.1 x,y取值范围[-1,1]1.2.2 x,y取值范围超出[-1,1] 2. 使用grid_sample算子构建一个网络3. 走PTQ进行模型转换与编译 实操以J5 OE1.1.60对应的docker为例 1. grid_sample算子功能解析 该段主要参考:…...
JPA实现存储实体类型信息
本文已收录于专栏 《Java》 目录 背景介绍概念说明DiscriminatorValue 注解:DiscriminatorColumn 注解:Inheritance(strategy InheritanceType.SINGLE_TABLE) 注解: 实现方式父类子类执行效果 总结提升 背景介绍 在我们项目开发的过程中经常…...
阿里云快速部署开发环境 (Apache + Mysql8.0+Redis7.0.x)
本文章的内容截取于云服务器管理控制台提供的安装步骤,再整合前人思路而成,文章末端会提供原文连接 ApacheMysql 8.0部署MySQL数据库(Linux)步骤一:安装MySQL步骤二:配置MySQL步骤三:远程访问My…...
语音秘书:让录音转文字识别软件成为你的智能工作助手
每当在需要写文章的深夜,我的思绪经常跟不上我的笔,即便是说出来用录音机录下,再书写出来,也需要耗费大量时间。这个困扰了我很久的问题终于有了解决的办法,那就是录音转文字软件。它像个语言魔术师,将我所…...
【腾讯云 Cloud Studio 实战训练营】用于编写、运行和调试代码的云 IDE泰裤辣
文章目录 一、引言✉️二、什么是腾讯云 Cloud Studio🔍三、Cloud Studio优点和功能🌈四、Cloud Studio初体验(注册篇)🎆五、Cloud Studio实战演练(实战篇)🔬1. 初始化工作空间2. 安…...
[C#] 简单的俄罗斯方块实现
一个控制台俄罗斯方块游戏的简单实现. 已在 github.com/SlimeNull/Tetris 开源. 思路 很简单, 一个二维数组存储当前游戏的方块地图, 用 bool 即可, true 表示当前块被填充, false 表示没有. 然后, 抽一个 “形状” 类, 形状表示当前玩家正在操作的一个形状, 例如方块, 直线…...
postman官网下载安装登录详细教程
目录 一、介绍 二、官网下载 三、安装 四、注册登录postman账号(不注册也可以) postman注册登录和不注册登录的使用区别 五、关于汉化的说明 一、介绍 简单来说:是一款前后端都用来测试接口的工具。 展开来说:Postman 是一个…...
(贪心) 剑指 Offer 14- I. 剪绳子 ——【Leetcode每日一题】
❓剑指 Offer 14- I. 剪绳子 难度:中等 给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n > 1 并且 m > 1),每段绳子的长度记为 k[0],k[1]...k[m-1] 。请问 k[0]*k[1]*...*k[m…...
如何将Linux上的cpolar内网穿透设置成 - > 开机自启动
如何将Linux上的cpolar内网穿透设置成 - > 开机自启动 文章目录 如何将Linux上的cpolar内网穿透设置成 - > 开机自启动前言一、进入命令行模式二、输入token码三、输入内网穿透命令 前言 我们将cpolar安装到了Ubuntu系统上,并通过web-UI界面对cpolar的功能有…...
50.两数之和(力扣)
目录 问题描述 核心代码解决 代码思想 时间复杂度和空间复杂度 问题描述 给定一个整数数组 和一个整数目标值 ,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。numstarget 你可以假设每种输入只会对应一个答案。但是&am…...
k8s基础
k8s基础 文章目录 k8s基础一、k8s组件二、k8s组件作用1.master节点2.worker node节点 三、K8S创建Pod的工作流程?四、K8S资源对象1.Pod2.Pod控制器3.service && ingress 五、K8S资源配置信息六、K8s部署1.K8S二进制部署2.K8S kubeadm搭建 七、K8s网络八、K8…...
【自然语言处理】大模型高效微调:PEFT 使用案例
文章目录 一、PEFT介绍二、PEFT 使用2.1 PeftConfig2.2 PeftModel2.3 保存和加载模型 三、PEFT支持任务3.1 Models support matrix3.1.1 Causal Language Modeling3.1.2 Conditional Generation3.1.3 Sequence Classification3.1.4 Token Classification3.1.5 Text-to-Image Ge…...
FFmpeg将编码后数据保存成mp4
以下测试代码实现的功能是:持续从内存块中获取原始数据,然后依次进行解码、编码、最后保存成mp4视频文件。 可保存成单个视频文件,也可指定每个视频文件的总帧数,保存多个视频文件。 为了便于查看和修改,这里将可独立的…...
设置VsCode 将打开的多个文件分行(栏)排列,实现全部显示
目录 1. 前言 2. 设置VsCode 多文件分行(栏)排列显示 1. 前言 主流编程IDE几乎都有排列切换选择所要查看的文件功能,如下为Visual Studio 2022的该功能界面: 图 1 图 2 当在Visual Studio 2022打开很多文件时,可以按照图1、图2所示找到自…...
Vue.js2+Cesium1.103.0 六、标绘与测量
Vue.js2Cesium1.103.0 六、标绘与测量 点,线,面的绘制,可实时编辑图形,点击折线或多边形边的中心点,可进行添加线段移动顶点位置等操作,并同时计算出点的经纬度,折线的距离和多边形的面积。 De…...
【redis 延时队列】使用go-redis的list做异步,生产消费者模式
分享一个用到的,使用go-redis的list做异步,生产消费者模式,接着再用 go 协程去检测队列里是否有东西去消费 如果队列为空,就会一直pop,空轮询导致 cpu 资源浪费和redis qps无效升高,所以可以通过 time.Sec…...
激光焊接塑料多点测试全画面穿透率测试仪
工程塑料由于其具有高比强度、电绝缘性、耐磨性、耐腐蚀性等优点,已广泛应用于各个重要领域。另一方面,工程塑料还具有良好的焊接性,是制成复合材料的基体材料的优良选择,因此目前已成为国内外新型复合材料的研究热点。 工程塑料…...
用 Uno 当烧录器给 atmega328 烧录 bootloader
用 Uno 当烧录器给 atmega328 烧录 bootloader date: 2023-8-10 https://backmountaindevil.github.io/#/hackaday/arduino/isp 引脚接线 把两个板子的 11(MOSI)、12(MISO)、13(SCK)、5V、GND 两两相连,还要把 Uno(烧录器)的 10 接到atmeg…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...
Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
