当前位置: 首页 > news >正文

HMMER-序列分析软件介绍

HMMER是一个软件包,它提供了制作蛋白质和DNA序列域家族概率模型的工具,称为轮廓隐马尔可夫模型、轮廓HMM或仅轮廓,并使用这些轮廓来注释新序列、搜索序列数据库以寻找其他同源物,以及进行深度多重序列比对。HMMER是已知蛋白质和DNA序列域家族的几种综合比对和图谱的基础,包括Pfam数据库。

网页版  https://www.ebi.ac.uk/Tools/hmmer/

conda install hmmer
# 各种安装方式。http://hmmer.org/documentation.html# install_path/hmmer-3.3.2/tutorial  test文件位置### 1. hmmsearch:用profile文件搜索序列数据库## Step 1: build a profile with hmmbuild# globins4.sto 四个珠蛋白序列的MSA比对结果,Stockholm formathmmbuild globins4.hmm globins4.sto# 统计对序列比对(MSA) 的HMM(隐马尔科夫) profile 
hmmstat globins4.hmm## Step 2: search the sequence database with hmmsearch
# 下载数据库文件如 uniprot_sprot.fasta, globins45.fa为演示数据库hmmsearch globins4.hmm globins45.fa > globins4.out# 输出globins4.out为sequence top hits list,BLAST-like style
# E-value 期望的假阳性率### 2  在序列数据库中迭代搜索
jackhmmer HBB_HUMAN uniprot_sprot.fasta### 3. 用序列文件搜索profile数据库
## Step 1: create a profile database file
hmmbuild globins4.hmm globins4.sto
hmmbuild fn3.hmm fn3.sto
hmmbuild Pkinase.hmm Pkinase.sto
cat globins4.hmm fn3.hmm Pkinase.hmm > minifam## Step 2: compress and index the flatfile with hmmpress
hmmpress minifam## Step 3: search the profile database with hmmscan
hmmscan minifam 7LESS_DROME


参考:
http://eddylab.org/software/hmmer/Userguide.pdf

相关文章:

HMMER-序列分析软件介绍

HMMER是一个软件包,它提供了制作蛋白质和DNA序列域家族概率模型的工具,称为轮廓隐马尔可夫模型、轮廓HMM或仅轮廓,并使用这些轮廓来注释新序列、搜索序列数据库以寻找其他同源物,以及进行深度多重序列比对。HMMER是已知蛋白质和DN…...

【项目学习1】如何将java对象转化为XML字符串

如何将java对象转化为XML字符串 将java对象转化为XML字符串,可以使用Java的XML操作库JAXB,具体操作步骤如下: 主要分为以下几步: 1、创建JAXBContext对象,用于映射Java类和XML。 JAXBContext jaxbContext JAXBConte…...

nginx负载均衡

负载均衡:反向代理来实现 正向代理的配置方法。 1、NGINX的七层代理和四层代理: 七层是最常用的反向代理方式,只能配置在nginx配置文件的http模块。而且配置方法名称:upstream 模块,不能写在server中,也…...

【毕业项目】自主设计HTTP

博客介绍:运用之前学过的各种知识 自己独立做出一个HTTP服务器 自主设计WEB服务器 背景目标描述技术特点项目定位开发环境WWW介绍 网络协议栈介绍网络协议栈整体网络协议栈细节与http相关的重要协议 HTTP背景知识补充特点uri & url & urn网址url HTTP请求和…...

关于安卓jar包修改并且重新发布

背景: 对于某些jar包,其内部是存在bug的,解决的方法无外乎就有以下几种方法: (1)通过反射,修改其赋值逻辑 (2)通过继承,重写其方法 (3&#xff0…...

Java课题笔记~ AspectJ 对 AOP 的实现(掌握)

AspectJ 对 AOP 的实现(掌握) 对于 AOP 这种编程思想,很多框架都进行了实现。Spring 就是其中之一,可以完成面向切面编程。然而,AspectJ 也实现了 AOP 的功能,且其实现方式更为简捷,使用更为方便,而且还支…...

npm 报错 cb() never called!

不知道有没有跟我一样的情况,在使用npm i的时候一直报错:cb() never called! 换了很多个node版本,还是不行,无法解决这个问题 百度也只是让降低node版本请缓存,gpt给出的解决方案也是同样的 但是缓存清过很多次了&a…...

finally有什么作用以及常用场景

在Java中,finally是一个关键字,用于定义一个代码块,该代码块中的代码无论是否发生异常都会被执行。finally块通常用于确保在程序执行过程中资源的释放和清理。 使用场景: 1. 资源释放:finally块经常用于释放打开的资…...

Python web实战之Django URL路由详解

概要 技术栈:Python、Django、Web开发、URL路由 Django是一种流行的Web应用程序框架,它采用了与其他主流框架类似的URL路由机制。URL路由是指将传入的URL请求映射到相应的视图函数或处理程序的过程。 什么是URL路由? URL路由是Web开发中非常…...

10-数据结构-队列(C语言)

队列 目录 目录 队列 一、队列基础知识 二、队列的基本操作 1.顺序存储 ​编辑 (1)顺序存储 (2)初始化及队空队满 (3)入队 (4)出队 (5)打印队列 &…...

面试之快速学习C++11 - 右值 移动构造 std::move

C11右值引用 字面意思,以引用传递的方式使用c右值左值和右值,左值是lvalue loactor value 存储在内存中,有明确存储地址的数据, 右值rvalue read value , 指的是那些可以提供数据值的数据(不一定可以寻址,…...

vue实现5*5宫格当鼠标滑过选中的正方形背景颜色统一变色

vue实现5*5宫格当鼠标滑过选中的正方形背景颜色统一变色 1、实现的效果 2、完整代码展示 <template><div id"app" mouseleave"handleMouseLeave({row: 0, col: 0 })"><div v-for"rowItem in squareNumber" :key"rowItem…...

2023-08-09 LeetCode每日一题(整数的各位积和之差)

2023-08-09每日一题 一、题目编号 1281. 整数的各位积和之差二、题目链接 点击跳转到题目位置 三、题目描述 给你一个整数 n&#xff0c;请你帮忙计算并返回该整数「各位数字之积」与「各位数字之和」的差。 示例1&#xff1a; 示例2&#xff1a; 提示&#xff1a; 1 …...

EditPlus连接Linux系统远程操作文件

EditPlus是一套功能强大的文本编辑器&#xff01; 1.File ->FTP->FTP Settings&#xff1b; 2.Add->Description->FTP server->Username->Password->Subdirectory->Advanced Options 注意&#xff1a;这里的Subdirectory设置的是以后上传文件的默认…...

JVM 垃圾回收

垃圾回收算法 标记-清除算法&#xff08;Mark and Sweep&#xff09; 标记-清除算法分为两个阶段。在标记阶段&#xff0c;垃圾收集器会标记所有活动对象&#xff1b;在清除阶段&#xff0c;垃圾收集器会清除所有未标记的对象。标记-清除算法存在的问题是会产生内存碎片&#…...

编程中的宝藏:二分查找

二分查找 假设你需要在电话簿中找到一个以字母 “K” 开头的名字&#xff08;虽然现在谁还在用电话簿呢&#xff01;&#xff09;。你可以从头开始翻页&#xff0c;直到进入以 “K” 打头的部分。然而&#xff0c;更明智的方法是从中间开始&#xff0c;因为你知道以 “K” 打头…...

计算机网络 数据链路层

...

如何维护自己的电脑

目录 1、关于电脑选择的建议 1.1、价格预算 1.2、明确需求 1.3、电脑配置 1.4、分辨率 1.5、续航能力 1.6、品牌选择 1.7、用户评测 1.8、各个电商平台对比 1.9、最后决策 2、我的选择 3、电脑保养 3.1 外部清洁 3.2 安装软件 3.3 优化操作系统 3.4 维护硬件设…...

智能优化算法——哈里鹰算法(Matlab实现)

目录 1 算法简介 2 算法数学模型 2.1.全局探索阶段 2.2 过渡阶段 2.3.局部开采阶段 3 求解步骤与程序框图 3.1 步骤 3.2 程序框图 4 matlab代码及结果 4.1 代码 4.2 结果 1 算法简介 哈里斯鹰算法(Harris Hawks Optimization&#xff0c;HHO)&#xff0c;是由Ali As…...

【深度学习】多粒度、多尺度、多源融合和多模态融合的区别

多粒度&#xff08;multiresolution&#xff09;和多尺度&#xff08;multiscale&#xff09; 多粒度&#xff08;multiresolution&#xff09;和多尺度&#xff08;multiscale&#xff09;都是指在不同的空间或时间尺度上对数据或信号进行分析和处理。其中 多尺度&#xff1…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中&#xff0c;我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道&#xff0c;它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!

本文介绍了一种名为AnomalyAny的创新框架&#xff0c;该方法利用Stable Diffusion的强大生成能力&#xff0c;仅需单个正常样本和文本描述&#xff0c;即可生成逼真且多样化的异常样本&#xff0c;有效解决了视觉异常检测中异常样本稀缺的难题&#xff0c;为工业质检、医疗影像…...

什么是VR全景技术

VR全景技术&#xff0c;全称为虚拟现实全景技术&#xff0c;是通过计算机图像模拟生成三维空间中的虚拟世界&#xff0c;使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验&#xff0c;结合图文、3D、音视频等多媒体元素…...