【论文速递】ICLR2018 - 用于小样本语义分割的条件网络
【论文速递】ICLR2018 - 用于小样本语义分割的条件网络
【论文原文】:CONDITIONAL NETWORKS FOR FEW-SHOT SEMANTIC SEGMENTATION(Workshop track - ICLR 2018)
【作者信息】:Kate Rakelly Evan Shelhamer Trevor Darrell Alexei Efros Sergey Levine
获取地址:https://openreview.net/pdf?id=SkMjFKJwG
博主关键词: 小样本学习,语义分割,条件网络
推荐相关论文:
- 无
摘要:
few-shot学习方法的目标是在低数据状态下获得良好的性能。结构化输出任务,如分割,由于其高维和输出之间的统计依赖性,对小样本学习提出了困难。为了解决这个问题,我们提出了co-FCN,这是一个通过端到端优化学习的条件网络,可以执行快速、准确的小样本分割。网络条件建立在一个带标注的支持图像集上,通过特征融合对一个未标注的查询图像进行推理。一旦学会,我们的条件反射方法就不需要对新数据进行进一步优化。注释被限制在一个单独的向前传递中,这使得我们的方法适合交互使用。我们用密集和稀疏注释来评估我们的co-FCN,即使只给出一个正像素和一个负像素,它也能达到具有竞争力的准确性,减少了分割新概念的注释负担。
简介:
卷积网络正在推动对事物和地点的视觉识别方面的进展,这在一定程度上是由收集昂贵且耗时的大型标记数据集实现的。few-shot学习有望提高数据效率;在极端情况下,一次性学习只需要一个新概念的单个注释。为了快速适应新的领域或任务,目前的一些方法依赖于元学习或学会学习。虽然这些方法很有前途,但重点是分类,而对结构化输出任务的研究很少。由于输出空间的高维,以及输入中像素的空间相关性导致的输出之间的统计依赖关系,目前的方法在很大程度上不能即开即用地应用于结构化输出设置。
语义分割是视觉识别中具有挑战性的核心任务。端到端优化的网络已经实现了最先进的性能,但依赖于大量的像素级标记数据集,这些数据集的收集特别繁重,使得注释负担的减轻实际上非常重要。因此,我们解决了由Shaban等人(2017)首次提出的小样本语义分割问题。在我们的co-FCN网络中,我们增加了FCN (Shelhamer et al., 2016)架构,并加入了一个条件分支,以合并few-shot标注。测试时无梯度流动;给定一个新的few-shot任务,求解它是网络中的一次向前传递。在训练过程中,我们通过从密集标记的语义分割数据集中采样来模拟few-shot任务。

我们的工作与一次性和交互式的细分方法有关。Shaban等人(2017)是第一个解决小样本语义分割的人。它们假设密集的像素级小样本注释。我们的方法在只有一个正像素和一个负像素的情况下达到了几乎相同的精度。Caelles等人(2017)展示了微调对视频对象分割的有效性,但要求在测试时对每个输入进行优化,在计算和注释方面成本太高。Xu等人(2016)学习了最先进的交互式对象分割,但仅限于在单个图像中传播注释,并且不能跨图像传播。我们的贡献包括处理稀疏的像素级注释,调节特征与参数,以及评估更强的分割和元学习基线。
【论文速递 | 精选】
相关文章:
【论文速递】ICLR2018 - 用于小样本语义分割的条件网络
【论文速递】ICLR2018 - 用于小样本语义分割的条件网络 【论文原文】:CONDITIONAL NETWORKS FOR FEW-SHOT SEMANTIC SEGMENTATION(Workshop track - ICLR 2018) 【作者信息】:Kate Rakelly Evan Shelhamer Trevor Darrell Alexe…...
本地生成动漫风格 AI 绘画 图像|Stable Diffusion WebUI 的安装和局域网部署教程
Stable Diffusion WebUI 的安装和部署教程1. 简介2. 安装环境2.1 Windows2.2 Linux3. 运行4. 模型下载链接5. 局域网部署5.1 Windows5.2 Linux6. 其他资源1. 简介 先放一张WebUI的图片生成效果图,以给大家学习的动力 :) 怎么样,…...
用一行Python代码,为图片上水印版权!
今天一个朋友跟我吐槽:前段时间,我辛辛苦苦整理的一份XX攻略,分享给自己的一些朋友,结果今天看到有人堂而皇之地拿着这份攻略图片去引流,并声称是自己整理的,真是岂有此理!他自己总结吃一堑长一…...
java中的lambda表达式
java中的lambda表达式java中的lambda表达式语法参数的不同写法代码块的不同写法函数式接口运用方法引用object::instanceMethodClass::staticMethodClass::instanceMethod什么是lambda表达式? 带参数变量的表达式。 java中的lambda表达式 我对java中lambda表达式是这…...
0.1opencv库VS环境配置
opencv环境配置 感谢大家学习这门教程。本系列文章首发于公众号【周旋机器视觉】。 这个这门课程的第一篇文章,主要是opencv环境配置。 本教程的环境为 Visual Studio 2019CMake 3.22.3opencv 4.6.0windows 10 1、opencv的源码下载与安装 直接访问opencv官网&…...
第五十七章 树状数组(二)
第五十七章 树状数组(二)一、差分的缺陷二、树状数组与差分三、例题题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1提示样例 1 解释:数据规模与约定代码一、差分的缺陷 差分的作用是能够在O(1)的时间内给一段区间加上相同的数字&am…...
比特币的网络
比特币的网络 1. DNS-seed 在比特币网络中,初始节点发现一共有两种方式。 第一种叫做 DNS-seed,又称 DNS 种子节点,DNS 就是中心化域名查询服务,比特币的 社区维护者会维护一些域名。 比如 seed.bitcoin.sipa.be 这个域名就是由比特币的核心开发者 Sipa 维护的,如果我…...
ChatGPT的模型介绍及GO语言实现API
ChatGPT除了大家熟悉的GPT3之外,还有其他辅助模型,比如处理代码的以及有害信息过滤的系统。总的来说是下面三个组成:GPT-3:一组能够理解和生成自然语言的模型CodexLimited beta:一组可以理解和生成代码的模型ÿ…...
Tile防丢器引入全新防盗模式,苹果Find My功能拓展到大众消费电子
Tile 宣布引入全新的防盗模式,Tile 配件启用之后,反跟踪扫描和安全功能就无法检测到该配件。Tile 为了遏制其物品追踪产品用于追踪某人,此前推出了 Scan and Secure 功能。iPhone 和安卓用户可以通过该功能扫描附近的 Tile 设备,以…...
物联网中RocketMQ的使用
物联网中RocketMQ的使用 1. 背景 随着物联网行业的发展、智能设备数量越来越多,很多常见的智能设备都进入了千家万户;随着设备数量的增加,也对后台系统的性能提出新的挑战。 在日常中,存在一些特定的场景,属于高并发请…...
用Three.js搭建的一个艺术场景
本文翻译自于Medium,原作者用 Three.js 创建了一个“Synthwave 场景”,效果还不错,在此加上自己的理解,记录一下。在线Demo. 地形构建 作者想要搭建一个中间平坦、两侧有凹凸山脉效果并且能够一直绵延不断的地形,接下…...
算法导论【字符串匹配】—朴素算法、Rabin-Karp、有限自动机、KMP
算法导论【字符串匹配】—朴素算法、Rabin Karp、有限自动机、KMP朴素字符串匹配算法Rabin-Karp算法有限自动机KMP算法朴素字符串匹配算法 预处理时间:0匹配时间:O((n-m1)m) Rabin-Karp算法 预处理时间:Θ(m),需要预先算出匹…...
如何在 Python 中验证用户输入
要验证用户输入: 使用 while 循环进行迭代,直到提供的输入值有效。检查输入值在每次迭代中是否有效。如果该值有效,则跳出 while 循环。 # ✅ 验证用户输入的是否是整数num 0while True:try:num int(input("Enter an integer 1-10: …...
JVM详解——类的加载
文章目录类的加载1、Java程序如何运行2、Java字节码文件3、类加载4、类加载的过程5、类加载器6、类的加载方式7、类的加载机制8、双亲委派机制9、破坏双亲委派机制类的加载 1、Java程序如何运行 首先通过Javac命令将.java文件编译生成.class字节码文件。 Javac是Java编译命令&a…...
Ubuntu最新版本(Ubuntu22.04LTS)安装nfs服务器及使用教程
目录 一、概述 二、在Ubuntu搭建nfs服务器 👉2.1 安装nfs服务器 👉2.2 创建nfs服务器共享目录 👉2.3 修改nfs服务器配置文件 👉2.4 重启nfs服务器 三、客户端访问nfs服务器共享目录 🎈3.1 在nfs客户端挂载服…...
Python-第九天 Python异常、模块与包
Python-第九天 Python异常、模块与包一、了解异常1. 什么是异常:2. bug是什么意思:二、异常的捕获方法1. 为什么要捕获异常?2. 捕获异常的语法3. 如何捕获所有异常?三、异常的传递性1.异常是具有传递性的四、Python模块1. 什么是模…...
博彩公司 BetMGM 发生数据泄露,“赌徒”面临网络风险
Bleeping Computer 网站披露,著名体育博彩公司 BetMGM 发生一起数据泄露事件,一名威胁攻击者成功窃取其大量用户个人信息。 据悉,BetMGM 数据泄漏事件中,攻击者盗取了包括用户姓名、联系信息(如邮政地址、电子邮件地址…...
初探Mysql反向读取文件
前言 Mysql反向读取文件感觉蛮有意思的,进行了解过后,简单总结如下,希望能对在学习Mysql反向读取文件的师傅有些许帮助。 前置知识 在Mysql中存在这样一条语句 LOAD DATA INFILE它的作用是读取某个文件中的内容并放置到要求的表中&#x…...
地图坐标系大全:常用地图坐标系详解与转换指南
介绍地图坐标系的基本概念和原理地图坐标系是用于描述地图上位置的数学模型。它可以用来表示地球表面上的任意一个点,使得这个点的位置可以在地图上精确定位。不同的地图坐标系采用不同的基准面和投影方式,因此会有不同的坐标系参数,不同的坐…...
使用 URLSearchParams 解析和管理URL query参数
介绍 首先 URLSearchParams是一个构造函数,会生成一个URLSearchParams对象,参数类型: 不传 | string | object | URLSearchParams, 并且遇到特殊字符它会自动帮我们encode 和 decode const ur…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)
参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...
关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...
2025季度云服务器排行榜
在全球云服务器市场,各厂商的排名和地位并非一成不变,而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势,对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析: 一、全球“三巨头”…...
Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...
LabVIEW双光子成像系统技术
双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制,展现出显著的技术优势: 深层组织穿透能力:适用于活体组织深度成像 高分辨率观测性能:满足微观结构的精细研究需求 低光毒性特点:减少对样本的损伤…...
华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)
题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...
从物理机到云原生:全面解析计算虚拟化技术的演进与应用
前言:我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM(Java Virtual Machine)让"一次编写,到处运行"成为可能。这个软件层面的虚拟化让我着迷,但直到后来接触VMware和Doc…...
