当前位置: 首页 > news >正文

时间序列预测任务下探索深度学习参数对模型预测性能的影响

时间序列相关的项目在我之前的很多博文中都有涉及,覆盖的数据领域也是比较广泛的,很多任务或者是项目中往往是搭建出来指定的模型之后就基本完成任务了,比较少去通过实验的维度去探索分析不同参数对模型性能的影响,这两天正好有时间也有这么个机会,就想着从这个角度做点事情来对模型产生的结果进行分析。

数据可以使用任意时序的数据都是可以的,本质都是时间序列的数据即可。简单的实例数据如下所示:

 参考前面的博文即可知晓如何将时序数据转化为标准的预测数据集,这里就不再赘述了。

这里主要是想从实验角度来分析结果,基础模型构建如下所示,首先考虑的是模型层数产生的影响,这里层数从1叠加至3层:

def initModel(steps, features):"""模型初始化"""model = Sequential()model.add(LSTM(64,activation="relu",input_shape=(steps, features),kernel_regularizer=l2(0.001),return_sequences=False,))model.add(Dense(features))model.compile(optimizer="adam", loss="mse")return model

 结果如下所示:

 接下来是两层的,如下所示:

def initModel(steps, features):"""模型初始化"""model = Sequential()model.add(LSTM(64,activation="relu",input_shape=(steps, features),kernel_regularizer=l2(0.001),return_sequences=True,))model.add(LSTM(64, activation="relu", kernel_regularizer=l2(0.001)))model.add(Dense(features))model.compile(optimizer="adam", loss="mse")return model

结果如下所示:

 最后是3层的,如下所示:

def initModel(steps, features):"""模型初始化"""model = Sequential()model.add(LSTM(64,activation="relu",input_shape=(steps, features),kernel_regularizer=l2(0.001),return_sequences=True,))model.add(LSTM(64, activation="relu", kernel_regularizer=l2(0.001),return_sequences=True))model.add(LSTM(64, activation="relu", kernel_regularizer=l2(0.001)))model.add(Dense(features))model.compile(optimizer="adam", loss="mse")return model

结果如下所示:

 直观体验下来是层数的增加并没有带来提升,反而是带来了崩溃式的结果。

接下来想要看下同样结构下,改变参数值带来的变化。

简单的实例如下所示:

def initModel(steps, features):"""模型初始化"""model = Sequential()model.add(LSTM(128,activation="relu",input_shape=(steps, features),kernel_regularizer=l2(0.001),return_sequences=False,))model.add(Dense(features))model.compile(optimizer="adam", loss="mse")return model

结果如下所示:

 接下来同样的思路改变参数,结果如下所示:

 参数的调整能带来一定的改变但是限定在一定的复读内,接下来考虑借鉴之前目标检测里面的方案来改造设计新的结构,借助于搜索技术可以事半功倍,结果如下所示:

 可以看到:结果有了质的提升。后面有时间再继续深度研究下。

相关文章:

时间序列预测任务下探索深度学习参数对模型预测性能的影响

时间序列相关的项目在我之前的很多博文中都有涉及,覆盖的数据领域也是比较广泛的,很多任务或者是项目中往往是搭建出来指定的模型之后就基本完成任务了,比较少去通过实验的维度去探索分析不同参数对模型性能的影响,这两天正好有时…...

React Dva项目 简单引入models中的所有JS文件

我们前面接触的 Dva项目 models目录下的文件还要一个一个引入 其实体验并不是很好 而且如果项目很大那就比较麻烦了 我们可以在 models 下创建一个 index.js 文件 编写代码如下 const context require.context("./", false, /\.js$/); export default context.key…...

ROS入门-第 1 章 ROS概述与环境搭建

目录 第 1 章 ROS概述与环境搭建 1.1 ROS简介 1.1.1 ROS概念 1.1.2 ROS设计目标 1.1.3 ROS发展历程 1.3 ROS快速体验 1.3.1 HelloWorld实现简介 1.3.2 HelloWorld(C版) 步骤 1:创建工作空间 步骤 2:创建发布者节点 步骤…...

spring之AOP简单介绍

1.AOP的概念 AOP,Aspect Oriented Programming,面向切面编程,是对面向对象编程OOP的升华。OOP是纵向对一个 事物的抽象,一个对象包括静态的属性信息,包括动态的方法信息等。而AOP是横向的对不同事物的抽象,…...

使用Spark ALS模型 + Faiss向量检索实现用户扩量实例

1、通过ALS模型实现用户/商品Embedding的效果,获得其向量表示 准备训练数据, M (U , I, R) 即 用户集U、商品集I、及评分数据R。 (1)商品集I的选择:可以根据业务目标确定商品候选集,比如TopK热度召回、或…...

Jmeter入门之digest函数 jmeter字符串连接与登录串加密应用

登录请求中加密串是由多个子串连接,再加密之后传输。 参数连接:${var1}${var2}${var3} 加密函数:__digest (函数助手里如果没有该函数,请下载最新版本的jmeter5.0) 函数助手:Options > …...

uni-app实现图片上传功能

效果 代码 <uni-forms-item name"ViolationImg" label"三违照片 :"><uni-file-picker ref"image" limit"1" title"" fileMediatype"image" :listStyles"listStyles" :value"filePathsL…...

golang协程池库tunny实践

前言 线程池大家都听过&#xff0c;其主要解决的是线程频繁创建销毁带来的性能影响&#xff0c;控制线程数量。 go协程理论上支持百万协程并发&#xff0c;协程创建调度的消耗极低&#xff0c;但毕竟也是消耗对吧。 而且协程池可以做一些额外的功能&#xff0c;比如限制并发&…...

Android性能优化—数据结构优化

优化数据结构是提高Android应用性能的重要一环。在Android开发中&#xff0c;ArrayList、LinkedList和HashMap等常用的数据结构的正确使用对APP性能的提升有着重大的影响。 一、ArrayList ArrayList内部使用的是数组&#xff0c;默认大小10&#xff0c;当数组长度不足时&…...

STL模板——vector详解

一、vector对象的定义和初始化方式 vector 中的数据类型 T 可以代表任何数据类型&#xff0c;如 int、string、class、vector&#xff08;构建多维数组&#xff09; 等&#xff0c;就像一个可以放下任何东西的容器&#xff0c;因此 vector 也常被称作容器。字符串类型 string …...

国际顶级学术会议ISSTA召开,中山大学与微众银行联合发表区块链最新研究成果

美国当地时间7月17日&#xff0c;软件工程领域顶级会议ISSTA 2023在西雅图正式召开。ISSTA &#xff08;The 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis &#xff09;是软件测试与分析方面最著名的国际会议之一&#xff0c;也是中国计算机学会…...

Android开发从0开始(图形与按钮)

Drawable: drawable是抽象类。包括图片&#xff0c;色块&#xff0c;画板&#xff0c;背景。 drawable-ldpi 存放低分辨率图片。drawable-hdpi 高分辨率。drawable-xxhdpi 超高分辨率。 Android:src”drawable/image” 即可使用 Shape: 形状图形。圆角&#xff0c;矩形等常见几…...

Git入门到精通——保姆级教程(涵盖GitHub、Gitee、GitLab)

文章目录 前言一、Git1.Git-概述1.1.Git-概述-版本控制介绍1.2.Git-概述-分布式版本控制VS集中式版本控制1.3.Git-概述-代码托管中心1.4.Git-概述-安装和客户端的使用 2.Git-命令(常用命令)2.1.Git-命令-设置用户签名2.2.Git-命令-初始化本地库2.3.Git-命令-查看本地库状态2.4.…...

题解 | #J.Permutation and Primes# 2023牛客暑期多校8

J.Permutation and Primes 构造 题目大意 给定一个正整数 n n n &#xff0c;构造一个 n n n 的排列&#xff0c;使得每对相邻元素的和或差的绝对值为一奇素数 解题思路 两个数的和或差是奇数&#xff0c;那么它们的奇偶性一定是不同的&#xff0c;因此所求排列中&#…...

用vim打开后中文乱码怎么办

Vim中打开文件乱码主要是文件编码问题。用户可以参考如下解决方法。 1、用vim打开.vimrc配置文件 vim ~/.vimrc**注意&#xff1a;**如果用户根目录下没有.vimrc文件就把/etc/vim/vimrc文件复制过来直接用 cp /etc/vim/vimrc ~/.vimrc2、在.vimrc中加入如下内容 set termen…...

自然语言处理: 第六章Transformer- 现代大模型的基石

理论基础 Transformer&#xff08;来自2017年google发表的Attention Is All You Need (arxiv.org) &#xff09;&#xff0c;接上面一篇attention之后&#xff0c;transformer是基于自注意力基础上引申出来的结构&#xff0c;其主要解决了seq2seq的两个问题: 考虑了原序列和目…...

01-Hadoop集群部署(普通用户)

Hadoop集群部署&#xff08;普通用户&#xff09; 环境准备 1&#xff09;准备3台客户机&#xff08;关闭防火墙、静态IP、主机名称&#xff09; 如果这一步已经配置过了&#xff0c;可以忽略 # 1 关闭防火墙 systemctl stop firewalld.service # 关闭当前防火墙 systemctl…...

DC电源模块关于的电路布局设计

BOSHIDA DC电源模块关于的电路布局设计 DC电源模块是现代电子设备中常用的电源模块之一&#xff0c;其功能是将市电或其他输入电源转换成定电压、定电流的直流电源输出&#xff0c;以满足电子设备的供电需求。电路布局的设计是DC电源模块的重要组成部分&#xff0c;它直接影响…...

MATLAB实现免疫优化算法(附上多个完整仿真源码)

免疫优化算法是一种基于免疫学原理的优化算法。该算法的基本思想是通过模拟人类免疫系统的功能&#xff0c;来寻找最优解。 MATLAB是一种专门用于数学计算和数据处理的软件工具&#xff0c;它具有强大的数学计算和数据分析能力&#xff0c;可以方便地实现各种优化算法。 本文…...

登录界面中图片验证码的生成和校验

一、用pillpw生成图片验证码 1、安装pillow pip install pip install pillow2、下载字体 比如&#xff1a;Monaco.ttf 3、实现生成验证码的方法 该方法返回一个img ,可以把这个img图片保存到内存中&#xff0c;也可以以文件形式保存到磁盘&#xff0c;还返回了验证码的文字…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

MySQL 部分重点知识篇

一、数据库对象 1. 主键 定义 &#xff1a;主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 &#xff1a;确保数据的完整性&#xff0c;便于数据的查询和管理。 示例 &#xff1a;在学生信息表中&#xff0c;学号可以作为主键&#xff…...

Ubuntu Cursor升级成v1.0

0. 当前版本低 使用当前 Cursor v0.50时 GitHub Copilot Chat 打不开&#xff0c;快捷键也不好用&#xff0c;当看到 Cursor 升级后&#xff0c;还是蛮高兴的 1. 下载 Cursor 下载地址&#xff1a;https://www.cursor.com/cn/downloads 点击下载 Linux (x64) &#xff0c;…...

数据库——redis

一、Redis 介绍 1. 概述 Redis&#xff08;Remote Dictionary Server&#xff09;是一个开源的、高性能的内存键值数据库系统&#xff0c;具有以下核心特点&#xff1a; 内存存储架构&#xff1a;数据主要存储在内存中&#xff0c;提供微秒级的读写响应 多数据结构支持&…...

Mysql故障排插与环境优化

前置知识点 最上层是一些客户端和连接服务&#xff0c;包含本 sock 通信和大多数jiyukehuduan/服务端工具实现的TCP/IP通信。主要完成一些简介处理、授权认证、及相关的安全方案等。在该层上引入了线程池的概念&#xff0c;为通过安全认证接入的客户端提供线程。同样在该层上可…...

【大厂机试题解法笔记】矩阵匹配

题目 从一个 N * M&#xff08;N ≤ M&#xff09;的矩阵中选出 N 个数&#xff0c;任意两个数字不能在同一行或同一列&#xff0c;求选出来的 N 个数中第 K 大的数字的最小值是多少。 输入描述 输入矩阵要求&#xff1a;1 ≤ K ≤ N ≤ M ≤ 150 输入格式 N M K N*M矩阵 输…...

ABAP设计模式之---“Tell, Don’t Ask原则”

“Tell, Don’t Ask”是一种重要的面向对象编程设计原则&#xff0c;它强调的是对象之间如何有效地交流和协作。 1. 什么是 Tell, Don’t Ask 原则&#xff1f; 这个原则的核心思想是&#xff1a; “告诉一个对象该做什么&#xff0c;而不是询问一个对象的状态再对它作出决策。…...

从0开始一篇文章学习Nginx

Nginx服务 HTTP介绍 ## HTTP协议是Hyper Text Transfer Protocol&#xff08;超文本传输协议&#xff09;的缩写,是用于从万维网&#xff08;WWW:World Wide Web &#xff09;服务器传输超文本到本地浏览器的传送协议。 ## HTTP工作在 TCP/IP协议体系中的TCP协议上&#…...