当前位置: 首页 > news >正文

使用C#加载TOOLBLOCK

前言

因为Vpp文件类型包含了以下三种

  • QuickBuid
  • Job
  • ToolBlock

不同类型的打开方式不同,需要提前知道vpp是什么类型

例如

这个TB.vpp文件是TOOLBLOCK,就不能直接在visionpro中打开(直接打开需要QuickBuid文件),

 可以先新建一个QuickBuid文件,引入ToolBlock工具,在ToolBlock工具打开

类型查找方式

需要用到此工具,但不能直接打开,需要用命令行

C:\Users\red>cd D:\Visionpro\VisionPro\bin\  //转到此目录C:\Users\red>vppversion --help //查看帮助文件//查看对应vpp文件类型及其他内容
C:\Users\red>vppversion -v D:\Visionpro\VisionPro\samples\Programming\ToolBlock\ToolBlockLoad\TB.vpp

 其他

用VS加载TOOLBLOCK

准备工作

可以提前复制vpp和图像文件加入项目中,方便添加相对路径

 代码

需要提前添加引用,添加程序集

编写代码时要参考vpp中的命名规则

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using Cognex.VisionPro;
using Cognex.VisionPro.Blob;
using Cognex.VisionPro.ToolBlock;
using Cognex.VisionPro.ImageFile;namespace mytbload
{public partial class Form1 : Form{CogImageFileTool mIFTool;CogToolBlock tb;public Form1(){InitializeComponent();mIFTool = new CogImageFileTool();mIFTool.Operator.Open("coins.idb", CogImageFileModeConstants.Read);//设置图像来源tb = CogSerializer.LoadObjectFromFile("TB.vpp") as CogToolBlock;//设置vpp文件tb.Inputs["FilterLowValue"].Value = 5050;//设置输入参数最小最大面积tb.Inputs["FilterHighValue"].Value = 8050;tb.Ran += Tb_Ran;//获取结果}private void Tb_Ran(object sender, EventArgs e){//数据更改部分//显示是否合格lbResult.Text = tb.Outputs["InspectionPassed"].Value.ToString();//显示斑点个数CogBlobTool mBlobTool = tb.Tools["CogBlobTool1"] as CogBlobTool;lbCount.Text = mBlobTool.Results.GetBlobs().Count.ToString();}private void Form1_Load(object sender, EventArgs e){}private void button1_Click(object sender, EventArgs e){mIFTool.Run();//运行图像输入工具tb.Inputs["Image"].Value = mIFTool.OutputImage as CogImage8Grey;//设置,传入一张灰度图tb.Run();}}
}

  结果图

visionpro中toolblock图

 

相关文章:

使用C#加载TOOLBLOCK

前言 因为Vpp文件类型包含了以下三种 QuickBuidJobToolBlock 不同类型的打开方式不同,需要提前知道vpp是什么类型 例如 这个TB.vpp文件是TOOLBLOCK,就不能直接在visionpro中打开(直接打开需要QuickBuid文件), 可以…...

MPAS-A原理及陆面模式的基本概念

跨尺度预测模式(The Model for Prediction Across Scales - MPAS)是由洛斯阿拉莫斯实验室和美国国家大气研究中心(NCAR)共同开发,其由3个部分组成,分别称为 MPAS-A(大气模型)、MPAS-O(海洋模型&…...

前端技术Html,Css,JavaScript,Vue3

Html 1.基本标签 <h1>最大的标题</h1> <h2> . . . </h2> <h3> . . . </h3> <h4> . . . </h4> <h5> . . . </h5> <h6>最小的标题</h6><p>这是一个段落。</p> <br> &#xff08;换…...

实战项目——多功能电子时钟

一&#xff0c;项目要求 二&#xff0c;理论原理 通过按键来控制状态机的状态&#xff0c;在将状态值传送到各个模块进行驱动&#xff0c;在空闲状态下&#xff0c;数码管显示基础时钟&#xff0c;基础时钟是由7个计数器组合而成&#xff0c;当在ADJUST状态下可以调整时间&…...

【es6】对象解构赋值

es6中对象解构赋值&#xff1a; 代码 let { foo: baz } { foo: rose, bar: jeck }; baz // "rose"let obj { first: tom, last: rose }; let { first: f, last: l } obj; f // tom l // roselet { foo: baz } { foo: rose, bar: jeck }中的foo:baz部分&#xff…...

腾讯云服务器CVM标准型S6详细介绍_性能测评

腾讯云服务器CVM标准型S6实例是最新一代的标准型实例&#xff0c;CPU采用Intel Xeon Ice Lake处理器&#xff0c;主频2.7GHz&#xff0c;睿频3.3GHz&#xff0c;内存采用最新 DDR4&#xff0c;默认网络优化&#xff0c;最高内网收发能力达1900万pps&#xff0c;最高内网带宽可支…...

时间序列预测任务下探索深度学习参数对模型预测性能的影响

时间序列相关的项目在我之前的很多博文中都有涉及&#xff0c;覆盖的数据领域也是比较广泛的&#xff0c;很多任务或者是项目中往往是搭建出来指定的模型之后就基本完成任务了&#xff0c;比较少去通过实验的维度去探索分析不同参数对模型性能的影响&#xff0c;这两天正好有时…...

React Dva项目 简单引入models中的所有JS文件

我们前面接触的 Dva项目 models目录下的文件还要一个一个引入 其实体验并不是很好 而且如果项目很大那就比较麻烦了 我们可以在 models 下创建一个 index.js 文件 编写代码如下 const context require.context("./", false, /\.js$/); export default context.key…...

ROS入门-第 1 章 ROS概述与环境搭建

目录 第 1 章 ROS概述与环境搭建 1.1 ROS简介 1.1.1 ROS概念 1.1.2 ROS设计目标 1.1.3 ROS发展历程 1.3 ROS快速体验 1.3.1 HelloWorld实现简介 1.3.2 HelloWorld&#xff08;C版&#xff09; 步骤 1&#xff1a;创建工作空间 步骤 2&#xff1a;创建发布者节点 步骤…...

spring之AOP简单介绍

1.AOP的概念 AOP&#xff0c;Aspect Oriented Programming&#xff0c;面向切面编程&#xff0c;是对面向对象编程OOP的升华。OOP是纵向对一个 事物的抽象&#xff0c;一个对象包括静态的属性信息&#xff0c;包括动态的方法信息等。而AOP是横向的对不同事物的抽象&#xff0c;…...

使用Spark ALS模型 + Faiss向量检索实现用户扩量实例

1、通过ALS模型实现用户/商品Embedding的效果&#xff0c;获得其向量表示 准备训练数据&#xff0c; M (U , I, R) 即 用户集U、商品集I、及评分数据R。 &#xff08;1&#xff09;商品集I的选择&#xff1a;可以根据业务目标确定商品候选集&#xff0c;比如TopK热度召回、或…...

Jmeter入门之digest函数 jmeter字符串连接与登录串加密应用

登录请求中加密串是由多个子串连接&#xff0c;再加密之后传输。 参数连接&#xff1a;${var1}${var2}${var3} 加密函数&#xff1a;__digest &#xff08;函数助手里如果没有该函数&#xff0c;请下载最新版本的jmeter5.0&#xff09; 函数助手&#xff1a;Options > …...

uni-app实现图片上传功能

效果 代码 <uni-forms-item name"ViolationImg" label"三违照片 :"><uni-file-picker ref"image" limit"1" title"" fileMediatype"image" :listStyles"listStyles" :value"filePathsL…...

golang协程池库tunny实践

前言 线程池大家都听过&#xff0c;其主要解决的是线程频繁创建销毁带来的性能影响&#xff0c;控制线程数量。 go协程理论上支持百万协程并发&#xff0c;协程创建调度的消耗极低&#xff0c;但毕竟也是消耗对吧。 而且协程池可以做一些额外的功能&#xff0c;比如限制并发&…...

Android性能优化—数据结构优化

优化数据结构是提高Android应用性能的重要一环。在Android开发中&#xff0c;ArrayList、LinkedList和HashMap等常用的数据结构的正确使用对APP性能的提升有着重大的影响。 一、ArrayList ArrayList内部使用的是数组&#xff0c;默认大小10&#xff0c;当数组长度不足时&…...

STL模板——vector详解

一、vector对象的定义和初始化方式 vector 中的数据类型 T 可以代表任何数据类型&#xff0c;如 int、string、class、vector&#xff08;构建多维数组&#xff09; 等&#xff0c;就像一个可以放下任何东西的容器&#xff0c;因此 vector 也常被称作容器。字符串类型 string …...

国际顶级学术会议ISSTA召开,中山大学与微众银行联合发表区块链最新研究成果

美国当地时间7月17日&#xff0c;软件工程领域顶级会议ISSTA 2023在西雅图正式召开。ISSTA &#xff08;The 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis &#xff09;是软件测试与分析方面最著名的国际会议之一&#xff0c;也是中国计算机学会…...

Android开发从0开始(图形与按钮)

Drawable: drawable是抽象类。包括图片&#xff0c;色块&#xff0c;画板&#xff0c;背景。 drawable-ldpi 存放低分辨率图片。drawable-hdpi 高分辨率。drawable-xxhdpi 超高分辨率。 Android:src”drawable/image” 即可使用 Shape: 形状图形。圆角&#xff0c;矩形等常见几…...

Git入门到精通——保姆级教程(涵盖GitHub、Gitee、GitLab)

文章目录 前言一、Git1.Git-概述1.1.Git-概述-版本控制介绍1.2.Git-概述-分布式版本控制VS集中式版本控制1.3.Git-概述-代码托管中心1.4.Git-概述-安装和客户端的使用 2.Git-命令(常用命令)2.1.Git-命令-设置用户签名2.2.Git-命令-初始化本地库2.3.Git-命令-查看本地库状态2.4.…...

题解 | #J.Permutation and Primes# 2023牛客暑期多校8

J.Permutation and Primes 构造 题目大意 给定一个正整数 n n n &#xff0c;构造一个 n n n 的排列&#xff0c;使得每对相邻元素的和或差的绝对值为一奇素数 解题思路 两个数的和或差是奇数&#xff0c;那么它们的奇偶性一定是不同的&#xff0c;因此所求排列中&#…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

Cursor实现用excel数据填充word模版的方法

cursor主页&#xff1a;https://www.cursor.com/ 任务目标&#xff1a;把excel格式的数据里的单元格&#xff0c;按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例&#xff0c;…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

Oracle查询表空间大小

1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

2021-03-15 iview一些问题

1.iview 在使用tree组件时&#xff0c;发现没有set类的方法&#xff0c;只有get&#xff0c;那么要改变tree值&#xff0c;只能遍历treeData&#xff0c;递归修改treeData的checked&#xff0c;发现无法更改&#xff0c;原因在于check模式下&#xff0c;子元素的勾选状态跟父节…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?

现有的 Redis 分布式锁库&#xff08;如 Redisson&#xff09;相比于开发者自己基于 Redis 命令&#xff08;如 SETNX, EXPIRE, DEL&#xff09;手动实现分布式锁&#xff0c;提供了巨大的便利性和健壮性。主要体现在以下几个方面&#xff1a; 原子性保证 (Atomicity)&#xff…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...