当前位置: 首页 > news >正文

数据结构~七大排序算法(Java实现)

目录

插入排序

直接插入排序

希尔排序

选择排序

直接选择排序

堆排序

交换排序

冒泡排序

快速排序

递归实现

优化版本

归并排序 


插入排序

直接插入排序

public class MySort {public static void insertSort(int[] array) {for (int i = 1; i < array.length; i++) {int j = i - 1;int tmp = array[i];for (; j >= 0; j--) {if (tmp < array[j]) {array[j + 1] = array[j];} else {break;}}array[j + 1] = tmp;}}
}

· 时间复杂度:

        最好情况下O(n),即数组有序的情况

        最坏情况下O(n^2),即数组逆序的情况

· 空间复杂度:O(1)

· 稳定性: 稳定的排序算法

希尔排序

public class MySort {public static void shellSort(int[] array) {for (int gap = array.length / 2; gap > 1; gap /= 2) {shell(array, gap);}shell(array, 1);}private static void shell(int[] array, int gap) {for (int i = gap; i < array.length; i++) {int j = i - gap;int tmp = array[i];for (; j >= 0; j -= gap) {if (tmp < array[j]) {array[j + gap] = array[j];} else {break;}}array[j + gap] = tmp;}}
}

· 时间复杂度:O(n^1.3)

· 空间复杂度:O(1)

· 稳定性: 不稳定的排序算法

选择排序

直接选择排序

public class MySort {public static void selectSort(int[] array) {for (int i = 0; i < array.length; i++) {int minIndex = i;for (int j = i + 1; j < array.length; j++) {if (array[minIndex] > array[j]) {minIndex = j;}}swap(array, minIndex, i);}}private static void swap(int[] array, int i, int j) {int tmp = array[i];array[i] = array[j];array[j] = tmp;}
}

· 时间复杂度:O(n^2)

· 空间复杂度:O(1)

· 稳定性:不稳定的排序算法 

堆排序

要排升序时,建立大根堆,排降序时,建立小根堆

public class MySort {public static void heapSort(int[] array) {//1、建立大根堆  时间复杂度:O(n)createHeap(array);//2、排序  时间复杂度:O(n*logn)int end = array.length - 1;while (end > 0) {swap(array, 0, end);shiftDown(array, 0, end);end--;}}private static void createHeap(int[] array) {for (int parent = (array.length-1-1) / 2; parent >= 0; parent--) {shiftDown(array, parent, array.length);}}private static void shiftDown(int[] array, int parent, int len) {int child = 2 * parent + 1;while (child < len) {if (child+1 < len && array[child] < array[child+1]) {child++;//他一定保存的是左右孩子的最大值的下标}if (array[child] > array[parent]) {swap(array, child, parent);parent = child;child = 2*parent + 1;} else {break;}}}private static void swap(int[] array, int i, int j) {int tmp = array[i];array[i] = array[j];array[j] = tmp;}
}

· 时间复杂度:O(n*logn)  和数据是否有序无关

· 空间复杂度:O(1)

· 稳定性:不稳定的排序算法 

交换排序

冒泡排序

public class MySort {public static void bubbleSort(int[] array) {for (int i = 0; i < array.length; i++) {boolean flag = false;for (int j = 0; j < array.length - i - 1; j++) {if (array[j + 1] < array[j]) {swap(array, j + 1, j);flag = true;}}if (flag == false) {return;}}}private static void swap(int[] array, int i, int j) {int tmp = array[i];array[i] = array[j];array[j] = tmp;}
}

· 时间复杂度:O(n^2),优化后的冒泡排序时间复杂度最好可以到O(n)

· 空间复杂度:O(1)

· 稳定性:稳定的排序算法 

快速排序

· 时间复杂度:

        最好情况下:O(n*logn),待排序列尽量均匀的分割

        最坏情况下:O(n^2),待排序列正序或逆序

· 空间复杂度:

        最好情况下:O(logn)

        最坏情况下:O(n)

· 稳定性:不稳定的排序算法 

递归实现

public class MySort {public static void quickSort(int[] array) {quick(array, 0, array.length - 1);}private static void quick(int[] array, int start, int end) {if (start >= end) {return;}int pivot = partition(array, start, end);quick(array, start, pivot - 1);quick(array, pivot + 1, end);}private static int partition(int[] array, int left, int right) {int tmp = array[left];while (left < right) {while (left < right && array[right] >= tmp) {right--;}array[left] = array[right];while (left < right && array[left] <= tmp) {left++;}array[right] = array[left];}array[left] = tmp;return left;}
}

优化版本

对于快速排序的优化,利用三数取中法选取key值,当递归到小的区间时,采用直接插入排序

public class MyQuickSort {private static final int INSERT_SIZE = 100;private static void quickSort(int[] array) {quick(array, 0, array.length - 1);}private static void quick(int[] array, int start, int end) {if (start >= end) {return;}if (end - start + 1 <= INSERT_SIZE) {insertSort(array, start, end);return;}int index = threeMid(array, start, end);swap(array, start, index);int pivot = partition(array, start, end);quick(array, start, pivot - 1);quick(array, pivot + 1, end);}/*** 针对快排的优化:key值根据三数取中法获得*/private static int threeMid(int[] array, int left, int right) {int mid = (left + right) >>> 1;if (array[left] > array[right]) {if (array[mid] > array[left]) {return left;} else if (array[mid] < array[right]) {return right;} else {return mid;}} else {if (array[mid] > array[right]) {return right;} else if (array[mid] < array[left]) {return left;} else {return mid;}}}/*** 针对快排的优化:当递归到小的区间时,快排转为插入排序*/private static void insertSort(int[] array, int start, int end) {for (int i = start + 1; i < end + 1; i++) {int j = i - 1;int tmp = array[i];for (; j >= start; j--) {if (tmp < array[j]) {array[j + 1] = array[j];} else {break;}}array[j + 1] = tmp;}}private static int partition(int[] array, int left, int right) {int tmp = array[left];while (left < right) {while (left < right && array[right] > tmp) {right--;}array[left] = array[right];while (left < right && array[left] < tmp) {left++;}array[right] = array[left];}array[left] = tmp;return left;}private static void swap(int[] array, int i, int j) {int tmp = array[i];array[i] = array[j];array[j] = tmp;}
}

归并排序 

public class MySort {public static void mergeSort(int[] array) {mergeSortFunction(array, 0, array.length - 1);}private static void mergeSortFunction(int[] array, int low, int high) {if (low >= high) {return;}int mid = (low + high) >>> 1;mergeSortFunction(array, low, mid);mergeSortFunction(array, mid + 1, high);merge(array, low, high, mid);}private static void merge(int[] array, int low, int high, int mid) {int[] tmp = new int[high - low + 1];int k = 0;int start1 = low;int end1 = mid;int start2 = mid + 1;int end2 = high;while (start1 <= end1 && start2 <= end2) {if (array[start1] < array[start2]) {tmp[k++] = array[start1++];} else {tmp[k++] = array[start2++];}}while (start1 <= end1) {tmp[k++] = array[start1++];}while (start2 <= end2) {tmp[k++] = array[start2++];}for (int i = 0; i < k; i++) {array[i + low] = tmp[i];}}

· 时间复杂度:O(n*logn),不论有序或无序都是O(n*logn)

· 空间复杂度:O(n)

· 稳定性: 稳定的排序算法

相关文章:

数据结构~七大排序算法(Java实现)

目录 插入排序 直接插入排序 希尔排序 选择排序 直接选择排序 堆排序 交换排序 冒泡排序 快速排序 递归实现 优化版本 归并排序 插入排序 直接插入排序 public class MySort {public static void insertSort(int[] array) {for (int i 1; i < array.length;…...

python练习

项目场景一&#xff1a; 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢&#xff1f; 问题描述 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶…...

RPC-thrift实践

参考&#xff1a;https://www.cnblogs.com/52fhy/p/11146047.html 参考&#xff1a;https://juejin.cn/post/7138032523648598030 实践 安装thrift brew install thriftthrift -version 编写thrift文件 新建文件夹thrift新建文件 结构体文件 Struct.thrift 服务文件 Service.…...

Maven:工程的拆分与聚合

Maven 拆分与聚合创建父工程创建子模块pom.xml配置示例拆分与聚合 在 Maven 中, 拆分是将一个完整的项目分成一个个独立的小模块,聚合是将各个模块进一步组合,形成一个完整的项目。接下来简单示例拆分与聚合的过程。 创建父工程 父工程,一个pom工程,目录结构简单,只需有…...

使用uniapp创建小程序和H5界面

uniapp的介绍可以看官网&#xff0c;接下来我们使用uniapp创建小程序和H5界面&#xff0c;其他小程序也是可以的&#xff0c;只演示创建这2个&#xff0c;其实都是一套代码&#xff0c;只是生成的方式不一样而已。 uni-app官网 1.打开HBuilder X 选择如图所示&#xff0c;下…...

密度峰值聚类算法(DPC)

密度峰值聚类算法目录DPC算法1.1 DPC算法的两个假设1.2 DPC算法的两个重要概念1.3 DPC算法的执行步骤1.4 DPC算法的优缺点matlab代码密度计算函数计算delta寻找聚类中心点聚类算法目录 DPC算法 1.1 DPC算法的两个假设 1&#xff09;类簇中心被类簇中其他密度较低的数据点包围…...

RabbitMQ相关问题

文章目录避免重复消费(保证消息幂等性)消息积压上线更多的消费者&#xff0c;进行正常消费惰性队列消息缓存延时队列RabbitMQ如何保证消息的有序性&#xff1f;RabbitMQ消息的可靠性、延时队列如何实现数据库与缓存数据一致&#xff1f;开启消费者多线程消费避免重复消费(保证消…...

操作系统 三(存储管理)

一、 存储系统的“金字塔”层次结构设计原理&#xff1a;cpu自身运算速度很快。内存、外存的访问速度受到限制各层次存储器的特点&#xff1a;1&#xff09;主存储器&#xff08;主存/内存/可执行存储器&#xff09;保存进程运行时的程序和数据&#xff0c;内存的访问速度远低于…...

day34 贪心算法 | 860、柠檬水找零 406、根据身高重建队列 452、用最少数量的箭引爆气球

题目 860、柠檬水找零 在柠檬水摊上&#xff0c;每一杯柠檬水的售价为 5 美元。 顾客排队购买你的产品&#xff0c;&#xff08;按账单 bills 支付的顺序&#xff09;一次购买一杯。 每位顾客只买一杯柠檬水&#xff0c;然后向你付 5 美元、10 美元或 20 美元。你必须给每个…...

使用canvas给上传的整张图片添加平铺的水印

写在开头 哈喽&#xff0c;各位倔友们又见面了&#xff0c;本章我们继续来分享一个实用小技巧&#xff0c;给图片加水印功能&#xff0c;水印功能的目的是为了保护网站或作者版权&#xff0c;防止内容被别人利用或白嫖。 但是网络中&#xff0c;是没有绝对安全的&#xff0c;…...

[安装之4] 联想ThinkPad 加装固态硬盘教程

方案&#xff1a;保留原有的机械硬盘&#xff0c;再加装一个固态硬盘作为系统盘。由于X250没有光驱&#xff0c;这样就无法使用第二个2.5寸的硬盘。还好&#xff0c;X250留有一个M.2接口&#xff0c;这样&#xff0c;就可以使用NGFF M.2接口的固态硬盘。不过&#xff0c;这种接…...

Java数据类型、基本与引用数据类型区别、装箱与拆箱、a=a+b与a+=b区别

文章目录1.Java有哪些数据类型2.Java中引用数据类型有哪些&#xff0c;它们与基本数据类型有什么区别&#xff1f;3.Java中的自动装箱与拆箱4.为什么要有包装类型&#xff1f;5.aab与ab有什么区别吗?1.Java有哪些数据类型 8种基本数据类型&#xff1a; 6种数字类型(4个整数型…...

GoLang设置gofmt和goimports自动格式化

目录 设置gofmt gofmt介绍 配置gofmt 设置goimports goimports介绍 配置goimports 设置gofmt gofmt介绍 Go语言的开发团队制定了统一的官方代码风格&#xff0c;并且推出了 gofmt 工具&#xff08;gofmt 或 go fmt&#xff09;来帮助开发者格式化他们的代码到统一的风格…...

【k8s】如何搭建搭建k8s服务器集群(Kubernetes)

搭建k8s服务器集群 服务器搭建环境随手记 文章目录搭建k8s服务器集群前言&#xff1a;一、前期准备&#xff08;所有节点&#xff09;1.1所有节点&#xff0c;关闭防火墙规则&#xff0c;关闭selinux&#xff0c;关闭swap交换&#xff0c;打通所有服务器网络&#xff0c;进行p…...

DIDL4_前向传播与反向传播(模型参数的更新)

前向传播与反向传播前向传播与反向传播的作用前向传播及公式前向传播范例反向传播及公式反向传播范例小结前向传播计算图前向传播与反向传播的作用 在训练神经网络时&#xff0c;前向传播和反向传播相互依赖。 对于前向传播&#xff0c;我们沿着依赖的方向遍历计算图并计算其路…...

链表学习之链表划分

链表解题技巧 额外的数据结构&#xff08;哈希表&#xff09;&#xff1b;快慢指针&#xff1b;虚拟头节点&#xff1b; 链表划分 将单向链表值划分为左边小、中间相等、右边大的形式。中间值为pivot划分值。 要求&#xff1a;调整之后节点的相对次序不变&#xff0c;时间复…...

(考研湖科大教书匠计算机网络)第五章传输层-第一、二节:传输层概述及端口号、复用分用等概念

获取pdf&#xff1a;密码7281专栏目录首页&#xff1a;【专栏必读】考研湖科大教书匠计算机网络笔记导航 文章目录一&#xff1a;传输层概述&#xff08;1&#xff09;概述&#xff08;2&#xff09;从计算机网络体系结构角度看传输层&#xff08;3&#xff09;传输层意义二&am…...

C#:Krypton控件使用方法详解(第七讲) ——kryptonHeader

今天介绍的Krypton控件中的kryptonHeader&#xff0c;下面开始介绍这个控件的属性&#xff1a;控件的样子如上图所示&#xff0c;从上面控件外观来看&#xff0c;这个控件有三部分组成。第一部分是前面的图片&#xff0c;第二部分是kryptonHeader1文本&#xff0c;第三部分是控…...

5年软件测试工程师分享的自动化测试经验,一定要看

今天给大家分享一个华为的软件测试工程师分享的关于自动化测试的经验及干货。真的后悔太晚找他要了&#xff0c; 纯干货。一定要看完&#xff01; 1.什么是自动化测试&#xff1f; 用程序测试程序&#xff0c;用代码取代思考&#xff0c;用脚本运行取代手工测试。自动化测试涵…...

什么是猜疑心理?小猫测试网科普小作文

什么是猜疑心理&#xff1f;猜疑心理是说一个人心中想法偏离了客观事实&#xff0c;牵强附会&#xff0c;往往是指不好的一面&#xff0c;对别人的一言一行都充满了不良的解读&#xff0c;认为这些对自己都有针对性&#xff0c;目的性&#xff0c;对自己都是不利的。猜疑心理重…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能&#xff1a;服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发&#xff0c;其初衷是为了满足他自己的一个项目需求&#xff0c;即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源&#xff0c;Redis凭借其简单易用、…...

解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用

在工业制造领域&#xff0c;无损检测&#xff08;NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统&#xff0c;以非接触式光学麦克风技术为核心&#xff0c;打破传统检测瓶颈&#xff0c;为半导体、航空航天、汽车制造等行业提供了高灵敏…...

android RelativeLayout布局

<?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:gravity&…...

渗透实战PortSwigger Labs指南:自定义标签XSS和SVG XSS利用

阻止除自定义标签之外的所有标签 先输入一些标签测试&#xff0c;说是全部标签都被禁了 除了自定义的 自定义<my-tag onmouseoveralert(xss)> <my-tag idx onfocusalert(document.cookie) tabindex1> onfocus 当元素获得焦点时&#xff08;如通过点击或键盘导航&…...