当前位置: 首页 > news >正文

7.2 手撕VGG11模型 使用Fashion_mnist数据训练VGG

VGG首先引入块的思想将模型通用模板化

VGG模型的特点

与AlexNet,LeNet一样,VGG网络可以分为两部分,第一部分主要由卷积层和汇聚层组成,第二部分由全连接层组成。

VGG有5个卷积块,前两个块包含一个卷积层,后三个块包含两个卷积层。 2 * 1 + 3 * 2 = 8个卷积层和后面3个全连接层,所以它被称为VGG11

AlexNet模型架构与VGG模型架构对比

在这里插入图片描述

import torch
from torch import nn
from d2l import torch as d2l
import time
# 卷积块函数
def vgg_block(num_convs,in_channels,out_channels):layers = []for _ in range(num_convs):layers.append(nn.Conv2d(in_channels,out_channels,kernel_size=3,padding=1))layers.append(nn.ReLU())in_channels = out_channelslayers.append(nn.MaxPool2d(kernel_size=2,stride=2))'''`nn.Sequential(*layers)`中的`*layers`将会展开`layers`列表,将其中的每个层作为单独的参数传递给`nn.Sequential`函数,以便构建一个顺序模型。'''return nn.Sequential(*layers)
# 定义卷积块的输入输出
conv_arch = ((1,64),(1,128),(2,256),(2,512),(2,512))
# VGG有5个卷积块,前两个块包含一个卷积层,后三个块包含两个卷积层。 2 * 1 + 3 * 2 = 8个卷积层和后面3个全连接层,所以它被称为VGG11
def vgg(conv_arch):conv_blks = []in_channels = 1# 卷积层部分for (num_convs,out_channels) in conv_arch:conv_blks.append(vgg_block(num_convs,in_channels,out_channels))in_channels = out_channelsreturn nn.Sequential(# 5个卷积块部分*conv_blks,nn.Flatten(),# 3个全连接部分nn.Linear(out_channels*7*7,4096),nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096,4096),nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096,10))
net = vgg(conv_arch)
X = torch.randn(size=(1,1,224,224))
for blk in net:X = blk(X)print(blk.__class__.__name__,'output shape:\t',X.shape)
Sequential output shape:	 torch.Size([1, 64, 112, 112])
Sequential output shape:	 torch.Size([1, 128, 56, 56])
Sequential output shape:	 torch.Size([1, 256, 28, 28])
Sequential output shape:	 torch.Size([1, 512, 14, 14])
Sequential output shape:	 torch.Size([1, 512, 7, 7])
Flatten output shape:	 torch.Size([1, 25088])
Linear output shape:	 torch.Size([1, 4096])
ReLU output shape:	 torch.Size([1, 4096])
Dropout output shape:	 torch.Size([1, 4096])
Linear output shape:	 torch.Size([1, 4096])
ReLU output shape:	 torch.Size([1, 4096])
Dropout output shape:	 torch.Size([1, 4096])
Linear output shape:	 torch.Size([1, 10])

为了使用Fashion-MNIST数据集,使用缩小VGG11的通道数的VGG11

# 由于VGG11比AlexNet计算量更大,所以构建一个通道数校小的网络
ratio = 4
# 样本数pair[0]不变,通道数pair[1]缩小四倍
small_conv_arch = [(pair[0],pair[1] // ratio) for pair in conv_arch]
net = vgg(small_conv_arch)
X = torch.randn(size=(1,1,224,224))
for blk in net:X = blk(X)print(blk.__class__.__name__,'output shape:\t',X.shape)
Sequential output shape:	 torch.Size([1, 16, 112, 112])
Sequential output shape:	 torch.Size([1, 32, 56, 56])
Sequential output shape:	 torch.Size([1, 64, 28, 28])
Sequential output shape:	 torch.Size([1, 128, 14, 14])
Sequential output shape:	 torch.Size([1, 128, 7, 7])
Flatten output shape:	 torch.Size([1, 6272])
Linear output shape:	 torch.Size([1, 4096])
ReLU output shape:	 torch.Size([1, 4096])
Dropout output shape:	 torch.Size([1, 4096])
Linear output shape:	 torch.Size([1, 4096])
ReLU output shape:	 torch.Size([1, 4096])
Dropout output shape:	 torch.Size([1, 4096])
Linear output shape:	 torch.Size([1, 10])
'''开始计时'''
start_time = time.time()
lr,num_epochs,batch_size = 0.05,10,128
train_iter,test_iter = d2l.load_data_fashion_mnist(batch_size,resize=224)
d2l.train_ch6(net,train_iter,test_iter,num_epochs,lr,d2l.try_gpu())
'''时间结束'''
end_time = time.time()
run_time = end_time - start_time
# 将输出的秒数保留两位小数
print(f'{round(run_time,2)}s')

在这里插入图片描述

相关文章:

7.2 手撕VGG11模型 使用Fashion_mnist数据训练VGG

VGG首先引入块的思想将模型通用模板化 VGG模型的特点 与AlexNet,LeNet一样,VGG网络可以分为两部分,第一部分主要由卷积层和汇聚层组成,第二部分由全连接层组成。 VGG有5个卷积块,前两个块包含一个卷积层&#xff0c…...

docker安装ES

拉取镜像文件 sudo docker pull elasticsearch:7.12.0 创建容器挂载目录 sudo mkdir -p /home/elasticsearch/config sudo mkdir -p /home/elasticsearch/data sudo mkdir -p /home/elasticsearch/plugins elasticsearch.yml http.host: 0.0.0.0 创建容器 sudo docker r…...

python爬虫实战(2)--爬取某博热搜数据

1. 准备工作 使用python语言可以快速实现,调用BeautifulSoup包里面的方法 安装BeautifulSoup pip install BeautifulSoup完成以后引入项目 2. 开发 定义url url https://s.微博.com/top/summary?caterealtimehot定义请求头,微博请求数据需要cookie…...

k8s的Namespace详解

简介 在一个K8s集群中可以拥有多个命名空间,它们在逻辑上彼此隔离 namespaces是对一组资源和对象的抽象集合,比如可以将系统内部的对象划分为不同的项目组或用户组 K8s在集群启动之后,会默认创建几个namespace默认namespace default&#xff…...

【Redis】Redis内存过期策略和内存淘汰策略

【Redis】Redis内存过期策略和内存淘汰策略 文章目录 【Redis】Redis内存过期策略和内存淘汰策略1. 过期策略1.1 惰性删除1.2 周期删除1.2.1 SLOW模式1.2.2 FAST模式 2. 淘汰策略 1. 过期策略 Redis本身是一个典型的key-value内存存储数据库,因此所有的key、value都…...

技术干货 | cilium 原理之sock_connect

1.背景 在集群网络使用cilium之后,最明显的情况就是:服务暴露vipport,在集群内怎么测试都正常,但集群外访问可能是有问题的。而这就在于cilium所使用的ebpf科技。 2.引子:curl请求的路程 相对底层一点的语言&#xf…...

K8S之Pod详解与进阶

Pod详解与进阶 文章目录 Pod详解与进阶一、Pod详解1.pod定义2.pause容器作用3.Pod 的 3 种类型4.Pod 的 3 种容器5.Pod 的 3 种镜像拉取策略6.Pod 的 3 种容器重启策略 二、Pod进阶1.资源限制2.Pod 容器的 3 种探针(健康检查)3.探针的 3 种探测方式探针参…...

【小曾同学赠书活动】开始啦—〖测试设计思想〗

文章目录 ❤️ 赠书 —《测试设计思想》🌟 书籍介绍🌟 作者简介图书链接❤️ 活动介绍 — 赠送 3 本 ❤️ 赠书 —《测试设计思想》 首先提问 你知道测试设计思想有哪几类吗?你想奠定扎实的测试理论基础吗?你想改变关于你当前测试…...

【Docker晋升记】No.1--- Docker工具核心组件构成(镜像、容器、仓库)及性能属性

文章目录 前言🌟一、Docker工具🌟二、Docker 引擎🌏2.1.容器管理:🌏2.2.镜像管理:🌏2.3.资源管理:🌏2.4.网络管理:🌏2.5.存储管理:&am…...

ROBOGUIDE教程:FANUC机器人X型焊枪气动点焊焊接

目录 概述 机器人系统创建 X型点焊焊枪安装与配置 机器人组输出(GO)信号配置 气动点焊初始设置 点焊设备设置 点焊设备I/O信号设置 焊接控制器I/O信号设置 X型点焊焊枪运动控制配置 气动焊枪手动运行操作 气动点焊焊接指令介绍 机器人点焊焊接程序编写 机器人仿…...

二、 根据用户行为数据创建ALS模型并召回商品

二 根据用户行为数据创建ALS模型并召回商品 2.0 用户行为数据拆分 方便练习可以对数据做拆分处理 pandas的数据分批读取 chunk 厚厚的一块 相当大的数量或部分 import pandas as pd reader pd.read_csv(behavior_log.csv,chunksize100,iteratorTrue) count 0; for chunk in …...

[golang gin框架] 45.Gin商城项目-微服务实战之后台Rbac微服务之角色权限关联

角色和权限的关联关系在前面文章中有讲解,见[golang gin框架] 14.Gin 商城项目-RBAC管理之角色和权限关联,角色授权,在这里通过微服务来实现角色对权限的授权操作,这里要实现的有两个功能,一个是进入授权,另一个是,授权提交操作,页面如下: 一.实现后台权限管理Rbac之角色权限关…...

Redis中的数据类型

Redis中的数据类型 Redis存储的是key-value结构的数据,其中key是字符串类型,value有5种常用的数据类型: 字符串string哈希hash列表list集合set有序集合sorted set...

java spring cloud 企业工程管理系统源码+二次开发+定制化服务 em

Java版工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离 功能清单如下: 首页 工作台:待办工作、消息通知、预警信息,点击可进入相应的列表 项目进度图表:选择(总体或单个)项目显…...

Java程序猿搬砖笔记(十五)

文章目录 在Java中将类作为参数传递(泛型)IDEA快捷键:查看该方法调用了哪些方法、被哪些方法调用快捷键:ctrlalth IDEA快捷键:快速从controller跳转到serviceImplIDEA快捷键:实现接口的方法IDEA 快捷键:快速包裹代码ID…...

flask----内置信号的使用/django的信号/ flask-script/sqlalchemy介绍和快速使用/sqlalchemy介绍和快速使用

信号 内置信号的使用 # 第一步:写一个函数 def test(app, **kwargs):print(app)print(type(kwargs))# 请求地址是根路径,才记录日志,其它都不记录print(kwargs[context][request].path)if kwargs[context][request].path /:print(记录日志…...

Zookeeper 面试题

一、ZooKeeper 基础题 1.1、Zookeeper 的典型应用场景 Zookeeper 是一个典型的发布/订阅模式的分布式数据管理与协调框架,开发人员可以使用它来进行分布式数据的发布和订阅。 通过对 Zookeeper 中丰富的数据节点进行交叉使用,配合 Watcher 事件通知机…...

ELK 企业级日志分析系统(二)

目录 ELK Kiabana 部署(在 Node1 节点上操作) 1.安装 Kiabana 2.设置 Kibana 的主配置文件 3.启动 Kibana 服务 4.验证 Kibana 5.将 Apache 服务器的日志(访问的、错误的&#x…...

Linux版本 centOS 7,java连接mysql

在Linux下 使用java 访问数据库 , java 1.7版本, mysql 8.0.33版本, 连接驱动 mysql-connector-java-5.1.49.jar 代码如下: import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; import ja…...

开发工具IDEA的下载与初步使用【各种快捷键的设置,使你的开发事半功倍】

🥳🥳Welcome Huihuis Code World ! !🥳🥳 接下来看看由辉辉所写的关于IDEA的相关操作吧 目录 🥳🥳Welcome Huihuis Code World ! !🥳🥳 一.IDEA的简介以及优势 二.IDEA的下载 1.下…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

线程同步:确保多线程程序的安全与高效!

全文目录&#xff1a; 开篇语前序前言第一部分&#xff1a;线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分&#xff1a;synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...