7.2 手撕VGG11模型 使用Fashion_mnist数据训练VGG
VGG首先引入块的思想将模型通用模板化
VGG模型的特点
与AlexNet,LeNet一样,VGG网络可以分为两部分,第一部分主要由卷积层和汇聚层组成,第二部分由全连接层组成。
VGG有5个卷积块,前两个块包含一个卷积层,后三个块包含两个卷积层。 2 * 1 + 3 * 2 = 8个卷积层和后面3个全连接层,所以它被称为VGG11
AlexNet模型架构与VGG模型架构对比

import torch
from torch import nn
from d2l import torch as d2l
import time
# 卷积块函数
def vgg_block(num_convs,in_channels,out_channels):layers = []for _ in range(num_convs):layers.append(nn.Conv2d(in_channels,out_channels,kernel_size=3,padding=1))layers.append(nn.ReLU())in_channels = out_channelslayers.append(nn.MaxPool2d(kernel_size=2,stride=2))'''`nn.Sequential(*layers)`中的`*layers`将会展开`layers`列表,将其中的每个层作为单独的参数传递给`nn.Sequential`函数,以便构建一个顺序模型。'''return nn.Sequential(*layers)
# 定义卷积块的输入输出
conv_arch = ((1,64),(1,128),(2,256),(2,512),(2,512))
# VGG有5个卷积块,前两个块包含一个卷积层,后三个块包含两个卷积层。 2 * 1 + 3 * 2 = 8个卷积层和后面3个全连接层,所以它被称为VGG11
def vgg(conv_arch):conv_blks = []in_channels = 1# 卷积层部分for (num_convs,out_channels) in conv_arch:conv_blks.append(vgg_block(num_convs,in_channels,out_channels))in_channels = out_channelsreturn nn.Sequential(# 5个卷积块部分*conv_blks,nn.Flatten(),# 3个全连接部分nn.Linear(out_channels*7*7,4096),nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096,4096),nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096,10))
net = vgg(conv_arch)
X = torch.randn(size=(1,1,224,224))
for blk in net:X = blk(X)print(blk.__class__.__name__,'output shape:\t',X.shape)
Sequential output shape: torch.Size([1, 64, 112, 112])
Sequential output shape: torch.Size([1, 128, 56, 56])
Sequential output shape: torch.Size([1, 256, 28, 28])
Sequential output shape: torch.Size([1, 512, 14, 14])
Sequential output shape: torch.Size([1, 512, 7, 7])
Flatten output shape: torch.Size([1, 25088])
Linear output shape: torch.Size([1, 4096])
ReLU output shape: torch.Size([1, 4096])
Dropout output shape: torch.Size([1, 4096])
Linear output shape: torch.Size([1, 4096])
ReLU output shape: torch.Size([1, 4096])
Dropout output shape: torch.Size([1, 4096])
Linear output shape: torch.Size([1, 10])
为了使用Fashion-MNIST数据集,使用缩小VGG11的通道数的VGG11
# 由于VGG11比AlexNet计算量更大,所以构建一个通道数校小的网络
ratio = 4
# 样本数pair[0]不变,通道数pair[1]缩小四倍
small_conv_arch = [(pair[0],pair[1] // ratio) for pair in conv_arch]
net = vgg(small_conv_arch)
X = torch.randn(size=(1,1,224,224))
for blk in net:X = blk(X)print(blk.__class__.__name__,'output shape:\t',X.shape)
Sequential output shape: torch.Size([1, 16, 112, 112])
Sequential output shape: torch.Size([1, 32, 56, 56])
Sequential output shape: torch.Size([1, 64, 28, 28])
Sequential output shape: torch.Size([1, 128, 14, 14])
Sequential output shape: torch.Size([1, 128, 7, 7])
Flatten output shape: torch.Size([1, 6272])
Linear output shape: torch.Size([1, 4096])
ReLU output shape: torch.Size([1, 4096])
Dropout output shape: torch.Size([1, 4096])
Linear output shape: torch.Size([1, 4096])
ReLU output shape: torch.Size([1, 4096])
Dropout output shape: torch.Size([1, 4096])
Linear output shape: torch.Size([1, 10])
'''开始计时'''
start_time = time.time()
lr,num_epochs,batch_size = 0.05,10,128
train_iter,test_iter = d2l.load_data_fashion_mnist(batch_size,resize=224)
d2l.train_ch6(net,train_iter,test_iter,num_epochs,lr,d2l.try_gpu())
'''时间结束'''
end_time = time.time()
run_time = end_time - start_time
# 将输出的秒数保留两位小数
print(f'{round(run_time,2)}s')

相关文章:
7.2 手撕VGG11模型 使用Fashion_mnist数据训练VGG
VGG首先引入块的思想将模型通用模板化 VGG模型的特点 与AlexNet,LeNet一样,VGG网络可以分为两部分,第一部分主要由卷积层和汇聚层组成,第二部分由全连接层组成。 VGG有5个卷积块,前两个块包含一个卷积层,…...
docker安装ES
拉取镜像文件 sudo docker pull elasticsearch:7.12.0 创建容器挂载目录 sudo mkdir -p /home/elasticsearch/config sudo mkdir -p /home/elasticsearch/data sudo mkdir -p /home/elasticsearch/plugins elasticsearch.yml http.host: 0.0.0.0 创建容器 sudo docker r…...
python爬虫实战(2)--爬取某博热搜数据
1. 准备工作 使用python语言可以快速实现,调用BeautifulSoup包里面的方法 安装BeautifulSoup pip install BeautifulSoup完成以后引入项目 2. 开发 定义url url https://s.微博.com/top/summary?caterealtimehot定义请求头,微博请求数据需要cookie…...
k8s的Namespace详解
简介 在一个K8s集群中可以拥有多个命名空间,它们在逻辑上彼此隔离 namespaces是对一组资源和对象的抽象集合,比如可以将系统内部的对象划分为不同的项目组或用户组 K8s在集群启动之后,会默认创建几个namespace默认namespace defaultÿ…...
【Redis】Redis内存过期策略和内存淘汰策略
【Redis】Redis内存过期策略和内存淘汰策略 文章目录 【Redis】Redis内存过期策略和内存淘汰策略1. 过期策略1.1 惰性删除1.2 周期删除1.2.1 SLOW模式1.2.2 FAST模式 2. 淘汰策略 1. 过期策略 Redis本身是一个典型的key-value内存存储数据库,因此所有的key、value都…...
技术干货 | cilium 原理之sock_connect
1.背景 在集群网络使用cilium之后,最明显的情况就是:服务暴露vipport,在集群内怎么测试都正常,但集群外访问可能是有问题的。而这就在于cilium所使用的ebpf科技。 2.引子:curl请求的路程 相对底层一点的语言…...
K8S之Pod详解与进阶
Pod详解与进阶 文章目录 Pod详解与进阶一、Pod详解1.pod定义2.pause容器作用3.Pod 的 3 种类型4.Pod 的 3 种容器5.Pod 的 3 种镜像拉取策略6.Pod 的 3 种容器重启策略 二、Pod进阶1.资源限制2.Pod 容器的 3 种探针(健康检查)3.探针的 3 种探测方式探针参…...
【小曾同学赠书活动】开始啦—〖测试设计思想〗
文章目录 ❤️ 赠书 —《测试设计思想》🌟 书籍介绍🌟 作者简介图书链接❤️ 活动介绍 — 赠送 3 本 ❤️ 赠书 —《测试设计思想》 首先提问 你知道测试设计思想有哪几类吗?你想奠定扎实的测试理论基础吗?你想改变关于你当前测试…...
【Docker晋升记】No.1--- Docker工具核心组件构成(镜像、容器、仓库)及性能属性
文章目录 前言🌟一、Docker工具🌟二、Docker 引擎🌏2.1.容器管理:🌏2.2.镜像管理:🌏2.3.资源管理:🌏2.4.网络管理:🌏2.5.存储管理:&am…...
ROBOGUIDE教程:FANUC机器人X型焊枪气动点焊焊接
目录 概述 机器人系统创建 X型点焊焊枪安装与配置 机器人组输出(GO)信号配置 气动点焊初始设置 点焊设备设置 点焊设备I/O信号设置 焊接控制器I/O信号设置 X型点焊焊枪运动控制配置 气动焊枪手动运行操作 气动点焊焊接指令介绍 机器人点焊焊接程序编写 机器人仿…...
二、 根据用户行为数据创建ALS模型并召回商品
二 根据用户行为数据创建ALS模型并召回商品 2.0 用户行为数据拆分 方便练习可以对数据做拆分处理 pandas的数据分批读取 chunk 厚厚的一块 相当大的数量或部分 import pandas as pd reader pd.read_csv(behavior_log.csv,chunksize100,iteratorTrue) count 0; for chunk in …...
[golang gin框架] 45.Gin商城项目-微服务实战之后台Rbac微服务之角色权限关联
角色和权限的关联关系在前面文章中有讲解,见[golang gin框架] 14.Gin 商城项目-RBAC管理之角色和权限关联,角色授权,在这里通过微服务来实现角色对权限的授权操作,这里要实现的有两个功能,一个是进入授权,另一个是,授权提交操作,页面如下: 一.实现后台权限管理Rbac之角色权限关…...
Redis中的数据类型
Redis中的数据类型 Redis存储的是key-value结构的数据,其中key是字符串类型,value有5种常用的数据类型: 字符串string哈希hash列表list集合set有序集合sorted set...
java spring cloud 企业工程管理系统源码+二次开发+定制化服务 em
Java版工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离 功能清单如下: 首页 工作台:待办工作、消息通知、预警信息,点击可进入相应的列表 项目进度图表:选择(总体或单个)项目显…...
Java程序猿搬砖笔记(十五)
文章目录 在Java中将类作为参数传递(泛型)IDEA快捷键:查看该方法调用了哪些方法、被哪些方法调用快捷键:ctrlalth IDEA快捷键:快速从controller跳转到serviceImplIDEA快捷键:实现接口的方法IDEA 快捷键:快速包裹代码ID…...
flask----内置信号的使用/django的信号/ flask-script/sqlalchemy介绍和快速使用/sqlalchemy介绍和快速使用
信号 内置信号的使用 # 第一步:写一个函数 def test(app, **kwargs):print(app)print(type(kwargs))# 请求地址是根路径,才记录日志,其它都不记录print(kwargs[context][request].path)if kwargs[context][request].path /:print(记录日志…...
Zookeeper 面试题
一、ZooKeeper 基础题 1.1、Zookeeper 的典型应用场景 Zookeeper 是一个典型的发布/订阅模式的分布式数据管理与协调框架,开发人员可以使用它来进行分布式数据的发布和订阅。 通过对 Zookeeper 中丰富的数据节点进行交叉使用,配合 Watcher 事件通知机…...
ELK 企业级日志分析系统(二)
目录 ELK Kiabana 部署(在 Node1 节点上操作) 1.安装 Kiabana 2.设置 Kibana 的主配置文件 3.启动 Kibana 服务 4.验证 Kibana 5.将 Apache 服务器的日志(访问的、错误的&#x…...
Linux版本 centOS 7,java连接mysql
在Linux下 使用java 访问数据库 , java 1.7版本, mysql 8.0.33版本, 连接驱动 mysql-connector-java-5.1.49.jar 代码如下: import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; import ja…...
开发工具IDEA的下载与初步使用【各种快捷键的设置,使你的开发事半功倍】
🥳🥳Welcome Huihuis Code World ! !🥳🥳 接下来看看由辉辉所写的关于IDEA的相关操作吧 目录 🥳🥳Welcome Huihuis Code World ! !🥳🥳 一.IDEA的简介以及优势 二.IDEA的下载 1.下…...
Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...
【C语言练习】080. 使用C语言实现简单的数据库操作
080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)
前言: 双亲委派机制对于面试这块来说非常重要,在实际开发中也是经常遇见需要打破双亲委派的需求,今天我们一起来探索一下什么是双亲委派机制,在此之前我们先介绍一下类的加载器。 目录 编辑 前言: 类加载器 1. …...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...
从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障
关键领域软件测试的"安全密码":Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力,从金融交易到交通管控,这些关乎国计民生的关键领域…...
