当前位置: 首页 > news >正文

7.2 手撕VGG11模型 使用Fashion_mnist数据训练VGG

VGG首先引入块的思想将模型通用模板化

VGG模型的特点

与AlexNet,LeNet一样,VGG网络可以分为两部分,第一部分主要由卷积层和汇聚层组成,第二部分由全连接层组成。

VGG有5个卷积块,前两个块包含一个卷积层,后三个块包含两个卷积层。 2 * 1 + 3 * 2 = 8个卷积层和后面3个全连接层,所以它被称为VGG11

AlexNet模型架构与VGG模型架构对比

在这里插入图片描述

import torch
from torch import nn
from d2l import torch as d2l
import time
# 卷积块函数
def vgg_block(num_convs,in_channels,out_channels):layers = []for _ in range(num_convs):layers.append(nn.Conv2d(in_channels,out_channels,kernel_size=3,padding=1))layers.append(nn.ReLU())in_channels = out_channelslayers.append(nn.MaxPool2d(kernel_size=2,stride=2))'''`nn.Sequential(*layers)`中的`*layers`将会展开`layers`列表,将其中的每个层作为单独的参数传递给`nn.Sequential`函数,以便构建一个顺序模型。'''return nn.Sequential(*layers)
# 定义卷积块的输入输出
conv_arch = ((1,64),(1,128),(2,256),(2,512),(2,512))
# VGG有5个卷积块,前两个块包含一个卷积层,后三个块包含两个卷积层。 2 * 1 + 3 * 2 = 8个卷积层和后面3个全连接层,所以它被称为VGG11
def vgg(conv_arch):conv_blks = []in_channels = 1# 卷积层部分for (num_convs,out_channels) in conv_arch:conv_blks.append(vgg_block(num_convs,in_channels,out_channels))in_channels = out_channelsreturn nn.Sequential(# 5个卷积块部分*conv_blks,nn.Flatten(),# 3个全连接部分nn.Linear(out_channels*7*7,4096),nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096,4096),nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096,10))
net = vgg(conv_arch)
X = torch.randn(size=(1,1,224,224))
for blk in net:X = blk(X)print(blk.__class__.__name__,'output shape:\t',X.shape)
Sequential output shape:	 torch.Size([1, 64, 112, 112])
Sequential output shape:	 torch.Size([1, 128, 56, 56])
Sequential output shape:	 torch.Size([1, 256, 28, 28])
Sequential output shape:	 torch.Size([1, 512, 14, 14])
Sequential output shape:	 torch.Size([1, 512, 7, 7])
Flatten output shape:	 torch.Size([1, 25088])
Linear output shape:	 torch.Size([1, 4096])
ReLU output shape:	 torch.Size([1, 4096])
Dropout output shape:	 torch.Size([1, 4096])
Linear output shape:	 torch.Size([1, 4096])
ReLU output shape:	 torch.Size([1, 4096])
Dropout output shape:	 torch.Size([1, 4096])
Linear output shape:	 torch.Size([1, 10])

为了使用Fashion-MNIST数据集,使用缩小VGG11的通道数的VGG11

# 由于VGG11比AlexNet计算量更大,所以构建一个通道数校小的网络
ratio = 4
# 样本数pair[0]不变,通道数pair[1]缩小四倍
small_conv_arch = [(pair[0],pair[1] // ratio) for pair in conv_arch]
net = vgg(small_conv_arch)
X = torch.randn(size=(1,1,224,224))
for blk in net:X = blk(X)print(blk.__class__.__name__,'output shape:\t',X.shape)
Sequential output shape:	 torch.Size([1, 16, 112, 112])
Sequential output shape:	 torch.Size([1, 32, 56, 56])
Sequential output shape:	 torch.Size([1, 64, 28, 28])
Sequential output shape:	 torch.Size([1, 128, 14, 14])
Sequential output shape:	 torch.Size([1, 128, 7, 7])
Flatten output shape:	 torch.Size([1, 6272])
Linear output shape:	 torch.Size([1, 4096])
ReLU output shape:	 torch.Size([1, 4096])
Dropout output shape:	 torch.Size([1, 4096])
Linear output shape:	 torch.Size([1, 4096])
ReLU output shape:	 torch.Size([1, 4096])
Dropout output shape:	 torch.Size([1, 4096])
Linear output shape:	 torch.Size([1, 10])
'''开始计时'''
start_time = time.time()
lr,num_epochs,batch_size = 0.05,10,128
train_iter,test_iter = d2l.load_data_fashion_mnist(batch_size,resize=224)
d2l.train_ch6(net,train_iter,test_iter,num_epochs,lr,d2l.try_gpu())
'''时间结束'''
end_time = time.time()
run_time = end_time - start_time
# 将输出的秒数保留两位小数
print(f'{round(run_time,2)}s')

在这里插入图片描述

相关文章:

7.2 手撕VGG11模型 使用Fashion_mnist数据训练VGG

VGG首先引入块的思想将模型通用模板化 VGG模型的特点 与AlexNet,LeNet一样,VGG网络可以分为两部分,第一部分主要由卷积层和汇聚层组成,第二部分由全连接层组成。 VGG有5个卷积块,前两个块包含一个卷积层&#xff0c…...

docker安装ES

拉取镜像文件 sudo docker pull elasticsearch:7.12.0 创建容器挂载目录 sudo mkdir -p /home/elasticsearch/config sudo mkdir -p /home/elasticsearch/data sudo mkdir -p /home/elasticsearch/plugins elasticsearch.yml http.host: 0.0.0.0 创建容器 sudo docker r…...

python爬虫实战(2)--爬取某博热搜数据

1. 准备工作 使用python语言可以快速实现,调用BeautifulSoup包里面的方法 安装BeautifulSoup pip install BeautifulSoup完成以后引入项目 2. 开发 定义url url https://s.微博.com/top/summary?caterealtimehot定义请求头,微博请求数据需要cookie…...

k8s的Namespace详解

简介 在一个K8s集群中可以拥有多个命名空间,它们在逻辑上彼此隔离 namespaces是对一组资源和对象的抽象集合,比如可以将系统内部的对象划分为不同的项目组或用户组 K8s在集群启动之后,会默认创建几个namespace默认namespace default&#xff…...

【Redis】Redis内存过期策略和内存淘汰策略

【Redis】Redis内存过期策略和内存淘汰策略 文章目录 【Redis】Redis内存过期策略和内存淘汰策略1. 过期策略1.1 惰性删除1.2 周期删除1.2.1 SLOW模式1.2.2 FAST模式 2. 淘汰策略 1. 过期策略 Redis本身是一个典型的key-value内存存储数据库,因此所有的key、value都…...

技术干货 | cilium 原理之sock_connect

1.背景 在集群网络使用cilium之后,最明显的情况就是:服务暴露vipport,在集群内怎么测试都正常,但集群外访问可能是有问题的。而这就在于cilium所使用的ebpf科技。 2.引子:curl请求的路程 相对底层一点的语言&#xf…...

K8S之Pod详解与进阶

Pod详解与进阶 文章目录 Pod详解与进阶一、Pod详解1.pod定义2.pause容器作用3.Pod 的 3 种类型4.Pod 的 3 种容器5.Pod 的 3 种镜像拉取策略6.Pod 的 3 种容器重启策略 二、Pod进阶1.资源限制2.Pod 容器的 3 种探针(健康检查)3.探针的 3 种探测方式探针参…...

【小曾同学赠书活动】开始啦—〖测试设计思想〗

文章目录 ❤️ 赠书 —《测试设计思想》🌟 书籍介绍🌟 作者简介图书链接❤️ 活动介绍 — 赠送 3 本 ❤️ 赠书 —《测试设计思想》 首先提问 你知道测试设计思想有哪几类吗?你想奠定扎实的测试理论基础吗?你想改变关于你当前测试…...

【Docker晋升记】No.1--- Docker工具核心组件构成(镜像、容器、仓库)及性能属性

文章目录 前言🌟一、Docker工具🌟二、Docker 引擎🌏2.1.容器管理:🌏2.2.镜像管理:🌏2.3.资源管理:🌏2.4.网络管理:🌏2.5.存储管理:&am…...

ROBOGUIDE教程:FANUC机器人X型焊枪气动点焊焊接

目录 概述 机器人系统创建 X型点焊焊枪安装与配置 机器人组输出(GO)信号配置 气动点焊初始设置 点焊设备设置 点焊设备I/O信号设置 焊接控制器I/O信号设置 X型点焊焊枪运动控制配置 气动焊枪手动运行操作 气动点焊焊接指令介绍 机器人点焊焊接程序编写 机器人仿…...

二、 根据用户行为数据创建ALS模型并召回商品

二 根据用户行为数据创建ALS模型并召回商品 2.0 用户行为数据拆分 方便练习可以对数据做拆分处理 pandas的数据分批读取 chunk 厚厚的一块 相当大的数量或部分 import pandas as pd reader pd.read_csv(behavior_log.csv,chunksize100,iteratorTrue) count 0; for chunk in …...

[golang gin框架] 45.Gin商城项目-微服务实战之后台Rbac微服务之角色权限关联

角色和权限的关联关系在前面文章中有讲解,见[golang gin框架] 14.Gin 商城项目-RBAC管理之角色和权限关联,角色授权,在这里通过微服务来实现角色对权限的授权操作,这里要实现的有两个功能,一个是进入授权,另一个是,授权提交操作,页面如下: 一.实现后台权限管理Rbac之角色权限关…...

Redis中的数据类型

Redis中的数据类型 Redis存储的是key-value结构的数据,其中key是字符串类型,value有5种常用的数据类型: 字符串string哈希hash列表list集合set有序集合sorted set...

java spring cloud 企业工程管理系统源码+二次开发+定制化服务 em

Java版工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离 功能清单如下: 首页 工作台:待办工作、消息通知、预警信息,点击可进入相应的列表 项目进度图表:选择(总体或单个)项目显…...

Java程序猿搬砖笔记(十五)

文章目录 在Java中将类作为参数传递(泛型)IDEA快捷键:查看该方法调用了哪些方法、被哪些方法调用快捷键:ctrlalth IDEA快捷键:快速从controller跳转到serviceImplIDEA快捷键:实现接口的方法IDEA 快捷键:快速包裹代码ID…...

flask----内置信号的使用/django的信号/ flask-script/sqlalchemy介绍和快速使用/sqlalchemy介绍和快速使用

信号 内置信号的使用 # 第一步:写一个函数 def test(app, **kwargs):print(app)print(type(kwargs))# 请求地址是根路径,才记录日志,其它都不记录print(kwargs[context][request].path)if kwargs[context][request].path /:print(记录日志…...

Zookeeper 面试题

一、ZooKeeper 基础题 1.1、Zookeeper 的典型应用场景 Zookeeper 是一个典型的发布/订阅模式的分布式数据管理与协调框架,开发人员可以使用它来进行分布式数据的发布和订阅。 通过对 Zookeeper 中丰富的数据节点进行交叉使用,配合 Watcher 事件通知机…...

ELK 企业级日志分析系统(二)

目录 ELK Kiabana 部署(在 Node1 节点上操作) 1.安装 Kiabana 2.设置 Kibana 的主配置文件 3.启动 Kibana 服务 4.验证 Kibana 5.将 Apache 服务器的日志(访问的、错误的&#x…...

Linux版本 centOS 7,java连接mysql

在Linux下 使用java 访问数据库 , java 1.7版本, mysql 8.0.33版本, 连接驱动 mysql-connector-java-5.1.49.jar 代码如下: import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; import ja…...

开发工具IDEA的下载与初步使用【各种快捷键的设置,使你的开发事半功倍】

🥳🥳Welcome Huihuis Code World ! !🥳🥳 接下来看看由辉辉所写的关于IDEA的相关操作吧 目录 🥳🥳Welcome Huihuis Code World ! !🥳🥳 一.IDEA的简介以及优势 二.IDEA的下载 1.下…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...

JVM垃圾回收机制全解析

Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心,JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例: 1. onclick - 点击事件 当元素被单击时触发(左键点击) button.onclick function() {alert("按钮被点击了!&…...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...

CSS | transition 和 transform的用处和区别

省流总结: transform用于变换/变形,transition是动画控制器 transform 用来对元素进行变形,常见的操作如下,它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...

Qemu arm操作系统开发环境

使用qemu虚拟arm硬件比较合适。 步骤如下: 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载,下载地址:https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...

API网关Kong的鉴权与限流:高并发场景下的核心实践

🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 引言 在微服务架构中,API网关承担着流量调度、安全防护和协议转换的核心职责。作为云原生时代的代表性网关,Kong凭借其插件化架构…...

书籍“之“字形打印矩阵(8)0609

题目 给定一个矩阵matrix,按照"之"字形的方式打印这个矩阵,例如: 1 2 3 4 5 6 7 8 9 10 11 12 ”之“字形打印的结果为:1,…...