当前位置: 首页 > news >正文

python中常见的矩阵变换总结

       利用python做数据处理和分析过程中,如在开展机器学习的数据预处理、数据格式转换等等,不可避免的会涉及到各种矩阵变换,其中使用最多的就是numpy下的矩阵变换,以下是日常用到的一些矩阵变换总结,主要有矩阵中数据类型的整体转换、矩阵维度增减、多矩阵拼接、矩阵切片获取和多矩阵迭代等等,当然,pandas也有相应的矩阵变换操作,相对更复杂,后续会逐步发出来,供参考。

1.转换元素类型和增加维度

import numpy as np
data_pre=np.random.randint(2,10,size=[5,3]) #生成一个5*3的二维整形矩阵,数据范围在2~10之间
data_pre = np.array(data_pre, dtype=np.float32) #数据转换为float
target=np.random.random(10) #随机生成一个一维矩阵,10个数
target = np.array(target, dtype=np.float32).reshape(-1, 1) #数据转换为多行1列数据,相当于增加维度,float型,可以不用的。
data_pre= np.arange(0.0, 5.0, 0.1)[:, np.newaxis] #np.arange会生成一个一维矩阵,希望data_pre是一个二维矩阵,用np.newaxis相当于给数据增加一个维度
target=np.random.random(10) #随机生成一个一维矩阵,10个数
target=target.reshape(-1, 1) #实现行转换为列,转换前y_raw为100个数的一维矩阵,转换后y_raw为100*1的二维矩阵

2.拉平或降低维度

rng = np.random.RandomState(42) #获得随机数生成器,使得每次得到的随机数系列相同
X = np.sort(5 * rng.rand(100, 1), axis=0) #获的100个0到5的随机数给X,X.shape=(100,1),二维
y = np.sin(X).ravel() #矩阵多维度拉成一维矩阵,ravel() 返回的是视图,影响原始矩阵y,flatten() 返回的是拷贝。y.shape=(100,)
import cv2
img_data = cv2.imread('data/lena.jpg', cv2.IMREAD_COLOR) #利用opencv读取图片
img_data = img_data.reshape((-1, 3)) #将三维转换为二维,相当于高度和宽度相乘合并,最后一维不变(3列),转换前img_data:225*225*3,转换后50625*3
#整体维度不变,实现第一个维度行数调整,相当于根据labels找到centers[labels]生成新的new_colors数据,按照labels行数增加,如centers:16*3,labels:50625*3,转换后的new_colors为50625*3
# new_colors = centers[labels].reshape((-1, 3))

3.拼接矩阵

X_pos=np.random.randn(5,3) #随机生成一个10*3的二维矩阵
X_neg=np.random.randn(5,3) #随机生成一个10*3的二维矩阵
# 行拼接
#方式1:二维矩阵,列数不变,行数顺序追加,相当于行顺序拼接,两个矩阵的列数必须相同
X = np.concatenate((X_pos, X_neg))
#方式2:二维矩阵,列数不变,行数顺序追加,相当于行顺序拼接,两个矩阵的列数必须相同
X2=np.r_[X_pos,X_neg]
# 列拼接
#二维矩阵,行数不变,列数顺序追加,相当于列顺序拼接,两个矩阵的行数必须相同
X1=np.c_[X_pos,X_neg]
y_pos=np.random.random(3) #随机生成一个一维矩阵,3个数
y_neg=np.random.random(5) #随机生成一个一维矩阵,5个数
#一维矩阵,行数不变,列数顺序追加,相当于列顺序拼接
y = np.concatenate((y_pos, y_neg))

4.获取矩阵片段

int_list=np.random.randn(10,5) #随机生成一个10*5的二维矩阵
#list获取切片
#int_list[start:stop:step],参数分别为开始,结束和步长
print(int_list)
#对于一维矩阵,获取第1维度的第0,2,4...,步长为2的数据
#对于二维矩阵,获取第2维度的第0~10列,并指定获取第一维度的步长为2,获取的行数=stop/step,如下示例时5行数据
print(int_list[0:10:2])
print(int_list[0:5,:4]) #获取第1维度的第0~5行,第2维度的前4列数据
#对于三维矩阵
arr_float_3d = np.ones((3, 5, 4))
print(arr_float_3d)
#多维list获取第一通道数据
x=arr_float_3d[0, :, :]
#多维list获取第一通道,0~3行数据,第3列到结束的数据
x=arr_float_3d[0, :3, 3:]

5.zip内建函数

zip(*iterables)是内建函数
传入参数:元组、列表、字典等迭代器。
返回参数:一个元组迭代器,将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。主要用于遍历元组。
如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同,利用 * 号操作符,可以将元组解压为列表。
X1=np.random.random(5) #随机生成一个一维矩阵,5个数
Y1=np.random.randn(5).astype(np.int32) #随机生成一个一维矩阵,5个数,转换为整数
Z1=np.array([True, False, True, True, False]) #列表,bool值
zz=zip(X1,Y1,Z1)
result = [(a,b,c) for a,b,c in zip(X1,Y1,Z1)]
print(result)
x,y,z=zip(*zz) #元组转换为列表
print(list(x))
zz=zip() #没有参数时,返回的是空列表

相关文章:

python中常见的矩阵变换总结

利用python做数据处理和分析过程中,如在开展机器学习的数据预处理、数据格式转换等等,不可避免的会涉及到各种矩阵变换,其中使用最多的就是numpy下的矩阵变换,以下是日常用到的一些矩阵变换总结,主要有矩阵中数据类型的…...

LightningChart JS 2023Crack,CPU高效实时更新

LightningChart JS 2023Crack,CPU高效实时更新 添加了新的极地热图图表类型-添加了新系列类型,允许您在极地坐标系中可视化热图。极地热图的一些关键特征是: 处理多达400万个数据点。 快速加载速度和CPU高效实时更新。 100ms以完全显示由所有数据填充的热…...

hutool 导出复杂表头excel

假如已这样的表头导出数据 1.把包含表头的excel添加到项目资源目录 2.编写代码读取表头所在sheet,并且加入需导出的数据 /*** 导出excel*/public static void downloadExcel(List<List<Object>> list, HttpServletResponse response) throws IOException {/*Strin…...

git和github学习

一、什么是git和github? 二、学会使用github desktop应用程序 初始使用&#xff1a; 一开始我们是新账户&#xff0c;里面是没有仓库的&#xff0c;需要手动创建一个仓库。此时&#xff0c;这个仓库是创建在本地仓库里面&#xff0c;需要用到push命令&#xff08;就是那个pub…...

竞赛项目 车位识别车道线检测 - python opencv

0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 深度学习 机器视觉 车位识别车道线检测 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非常推荐&#xff01; &#x1f947;学长这里给一个题目综合评分(每项满分5分) …...

中文版开源Llama 2同时有了语言、多模态大模型,完全可商用

可以说&#xff0c;AI 初创公司 LinkSoul.Al 的这些开源项目让海外开源大模型在国内的普及和推广速度与国际几乎保持了一致。 7 月 19 日&#xff0c;Meta 终于发布了免费可商用版本 Llama 2&#xff0c;让开源大模型领域的格局发生了巨大变化。 Llama 2 模型系列包含 70 亿、…...

JavaScript、TypeScript、ES5、ES6之间的联系和区别

ECMAScript&#xff1a; 一个由 ECMA International 进行标准化&#xff0c;TC39 委员会进行监督的语言。通常用于指代标准本身。JavaScript&#xff1a; ECMAScript 标准的各种实现的最常用称呼。这个术语并不局限于某个特定版本的 ECMAScript 规范&#xff0c;并且可能被用于…...

RCNA——单臂路由

一&#xff0c;实验背景 之前的VLAN实现的很多都是相同部门互相访问&#xff0c;不同部门无法访问。不过这次整来了一个路由器&#xff0c;领导说大部分的部门虽说有保密信息需要互相隔离&#xff0c;但是这些部门和其它部门也应该互相连通以方便工作交流。因此要配置新的环境&…...

leetcode做题笔记69

给你一个非负整数 x &#xff0c;计算并返回 x 的 算术平方根 。 由于返回类型是整数&#xff0c;结果只保留 整数部分 &#xff0c;小数部分将被 舍去 。 注意&#xff1a;不允许使用任何内置指数函数和算符&#xff0c;例如 pow(x, 0.5) 或者 x ** 0.5 。 思路一&#xff…...

CentOS根分区扩容实战(非LVM)!

在虚拟化平台&#xff08;如KVM,ESXI&#xff09;中&#xff0c;将虚拟机的磁盘大小扩展到所需的大小。这将增加虚拟机的磁盘空间。 在虚拟机中&#xff0c;使用以下命令查看可用的磁盘和分区信息&#xff1a; sudo fdisk -l确定要扩展的根分区的设备名称&#xff08;如 /dev/…...

uniapp 微信小程序 分包

1、manifest.json内添加如图所示&#xff1a; "optimization" : {"subPackages" : true },2、在与pages同级上创建各个分包的文件夹 把需要分包的文件对应移入分包文件夹内 3、page.json内修改分包文件的路径 比如&#xff1a; {"path" : &qu…...

Redis_安装、启动以及基本命令

2.Redis安装 2.1前置处理环境 VMware安装安装centOS的linux操作系统xshellxftp 2.2 配置虚拟机网络 按ctrlaltf2 切换到命令行 cd (/)目录 修改/etc/sysconfig/network-scripts/ifcfg-ens3 vi 命令 按insert表示插入 按ctrlesc退出修改状态 :wq 写入并退出 此文件必须保持一…...

IPv4编址及子网划分

IPv4编址及子网划分 一、IPv4地址概述1.1、IPv4报文结构1.2、IPv4地址分类1.2.1、A类1.2.2、B类1.2.3、C类1.2.4、D类1.2.5、E类 1.3、私有IP地址1.4、特殊地址 二、子网划分2.1、子网掩码2.2、VLSM 可变长的子网掩码2.3、子网划分2.4、子网划分示例2.4.1、子网划分案例 —— A…...

HashMap 二十一问

1&#xff1a;HashMap 的数据结构&#xff1f; A&#xff1a;哈希表结构&#xff08;链表散列&#xff1a;数组链表&#xff09;实现&#xff0c;结合数组和链表的优点。当链表长度超过 8 时&#xff0c;链表转换为红黑树。transient Node<K,V>[] table; 2&#xff1a;…...

什么是Selenium?使用Selenium进行自动化测试

什么是 Selenium&#xff1f;   Selenium 是一种开源工具&#xff0c;用于在 Web 浏览器上执行自动化测试&#xff08;使用任何 Web 浏览器进行 Web 应用程序测试&#xff09;。   等等&#xff0c;先别激动&#xff0c;让我再次重申一下&#xff0c;Selenium 仅可以测试We…...

解决“先commit再pull”造成的git冲突

一、问题场景 在分支上修改了代码然后commit&#xff08;没有push&#xff09;&#xff0c;此时再git pull&#xff0c;拉下了别人的修改&#xff0c;但是报错无法merge 二、解决步骤 1.在idea下方工具栏选择git -> log&#xff0c;可以看到版本变化链表&#xff0c;右键…...

JAVA设计模式----原型设计模式

文章目录 一、简介二、实现方式三、原型模式的注意事项浅拷贝与深拷贝浅拷贝深拷贝一、简介 定义:用原型实例指定创建对象的种类,并通过拷贝这些原型创建新的对象。 类型:创建类模式 类图: 原型模式主要用于对象的复制,它的核心是就是类图中的原型类Prototype。Protot…...

树·c++

树&#xff08;Tree&#xff09; 是一种非线性的数据结构&#xff0c;它由若干个 节点&#xff08;Node&#xff09; 组成&#xff0c;并通过 边&#xff08;Edge&#xff09; 相互连接。树的结构类似于现实中的树&#xff0c;其中 根节点&#xff08;Root Node&#xff09; 位…...

vuejs 设计与实现 - 双端diff算法

我们介绍了简单 Diff 算法的实现原理。简单 Diff 算法利用虚拟节点的 key 属性&#xff0c;尽可能地复用 DOM元素&#xff0c;并通过移动 DOM的方式来完成更新&#xff0c;从而减少不断地创建和销毁 DOM 元素带来的性能开销。但是&#xff0c;简单 Diff 算法仍然存在很多缺陷&a…...

RISC-V在快速发展的处理器生态系统中找到立足点

原文&#xff1a;RISC-V Finds Its Foothold in a Rapidly Evolving Processor Ecosystem 作者&#xff1a;Agam Shah 转载自&#xff1a;https://thenewstack.io/risc-v-finds-its-foothold-in-a-rapidly-evolving-processor-ecosystem/ 以下是正文 But the open source pr…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

【分享】推荐一些办公小工具

1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由&#xff1a;大部分的转换软件需要收费&#xff0c;要么功能不齐全&#xff0c;而开会员又用不了几次浪费钱&#xff0c;借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

莫兰迪高级灰总结计划简约商务通用PPT模版

莫兰迪高级灰总结计划简约商务通用PPT模版&#xff0c;莫兰迪调色板清新简约工作汇报PPT模版&#xff0c;莫兰迪时尚风极简设计PPT模版&#xff0c;大学生毕业论文答辩PPT模版&#xff0c;莫兰迪配色总结计划简约商务通用PPT模版&#xff0c;莫兰迪商务汇报PPT模版&#xff0c;…...

给网站添加live2d看板娘

给网站添加live2d看板娘 参考文献&#xff1a; stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下&#xff0c;文章也主…...

Ubuntu系统复制(U盘-电脑硬盘)

所需环境 电脑自带硬盘&#xff1a;1块 (1T) U盘1&#xff1a;Ubuntu系统引导盘&#xff08;用于“U盘2”复制到“电脑自带硬盘”&#xff09; U盘2&#xff1a;Ubuntu系统盘&#xff08;1T&#xff0c;用于被复制&#xff09; &#xff01;&#xff01;&#xff01;建议“电脑…...

离线语音识别方案分析

随着人工智能技术的不断发展&#xff0c;语音识别技术也得到了广泛的应用&#xff0c;从智能家居到车载系统&#xff0c;语音识别正在改变我们与设备的交互方式。尤其是离线语音识别&#xff0c;由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力&#xff0c;广…...

软件工程 期末复习

瀑布模型&#xff1a;计划 螺旋模型&#xff1a;风险低 原型模型: 用户反馈 喷泉模型:代码复用 高内聚 低耦合&#xff1a;模块内部功能紧密 模块之间依赖程度小 高内聚&#xff1a;指的是一个模块内部的功能应该紧密相关。换句话说&#xff0c;一个模块应当只实现单一的功能…...