当前位置: 首页 > news >正文

微服务学习:SpringCloud+RabbitMQ+Docker+Redis+搜索+分布式

目录

一、高级篇

二、面试篇

==============实用篇==============

day05-Elasticsearch01

安装elasticsearch

1.部署单点es

2.部署kibana


一、高级篇

二、面试篇

==============实用篇==============

day05-Elasticsearch01

安装elasticsearch

1.部署单点es

1.1.创建网络

因为我们还需要部署kibana容器,因此需要让es和kibana容器互联。这里先创建一个网络:

docker network create es-net

1.2.加载镜像

这里我们采用elasticsearch的7.12.1版本的镜像,这个镜像体积非常大,接近1G。不建议大家自己pull。

课前资料提供了镜像的tar包:

大家将其上传到虚拟机中,然后运行命令加载即可:

# 导入数据

docker load -i es.tar

同理还有kibana的tar包也需要这样做。

1.3.运行

运行docker命令,部署单点es:

docker run -d \    #后台运行的意思--name es \    #起个名字-e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \  #环境变量:运行内存-e "discovery.type=single-node" \      #环境变量:单点模式-v es-data:/usr/share/elasticsearch/data \        #数据卷挂载:数据保存目录-v es-plugins:/usr/share/elasticsearch/plugins \  #数据卷挂载:数据插件目录--privileged \--network es-net \  #加入到这个网络-p 9200:9200 \      #暴露的端口-p 9300:9300 \      #节点互联的端口
elasticsearch:7.12.1    #容器名字

命令解释:

  • -e "cluster.name=es-docker-cluster":设置集群名称

  • -e "http.host=0.0.0.0":监听的地址,可以外网访问

  • -e "ES_JAVA_OPTS=-Xms512m -Xmx512m":内存大小

  • -e "discovery.type=single-node":非集群模式

  • -v es-data:/usr/share/elasticsearch/data:挂载逻辑卷,绑定es的数据目录

  • -v es-logs:/usr/share/elasticsearch/logs:挂载逻辑卷,绑定es的日志目录

  • -v es-plugins:/usr/share/elasticsearch/plugins:挂载逻辑卷,绑定es的插件目录

  • --privileged:授予逻辑卷访问权

  • --network es-net :加入一个名为es-net的网络中

  • -p 9200:9200:端口映射配置

在浏览器中输入:http://192.168.150.101:9200 即可看到elasticsearch的响应结果:

2.部署kibana

kibana可以给我们提供一个elasticsearch的可视化界面,便于我们学习。

2.1.部署

运行docker命令,部署kibana

docker run -d \
        --name kibana \
        -e ELASTICSEARCH_HOSTS=http://es:9200 \
        --network=es-net \
        -p 5601:5601  \
kibana:7.12.1        #kibana的版本一定要和es的版本保持一致

  • --network es-net :加入一个名为es-net的网络中,与elasticsearch在同一个网络中

  • -e ELASTICSEARCH_HOSTS=http://es:9200":设置elasticsearch的地址,因为kibana已经与elasticsearch在一个网络,因此可以用容器名直接访问elasticsearch

  • -p 5601:5601:端口映射配置

kibana启动一般比较慢,需要多等待一会,可以通过命令:

docker logs -f kibana

 查看运行日志,当查看到下面的日志,说明成功:

此时,在浏览器输入地址访问:http://192.168.150.101:5601,即可看到结果

2.2.DevTools 

kibana中提供了一个DevTools界面:

这个界面中可以编写DSL来操作elasticsearch。并且对DSL语句有自动补全功能。

3.安装IK分词器

3.1.在线安装ik插件(较慢)

# 进入容器内部
docker exec -it elasticsearch /bin/bash

# 在线下载并安装
./bin/elasticsearch-plugin  install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip

#退出
exit
#重启容器
docker restart elasticsearch

3.2.离线安装ik插件(推荐)

1)查看数据卷目录

安装插件需要知道elasticsearch的plugins目录位置,而我们用了数据卷挂载,因此需要查看elasticsearch的数据卷目录,通过下面命令查看:

docker volume inspect es-plugins

显示结果:

[
    {
        "CreatedAt": "2022-05-06T10:06:34+08:00",
        "Driver": "local",
        "Labels": null,
        "Mountpoint": "/var/lib/docker/volumes/es-plugins/_data",
        "Name": "es-plugins",
        "Options": null,
        "Scope": "local"
    }
]

说明plugins目录被挂载到了:/var/lib/docker/volumes/es-plugins/_data这个目录中。  

2)解压缩分词器安装包

下面我们需要把课前资料中的ik分词器解压缩,重命名为ik

3)上传到es容器的插件数据卷中

也就是/var/lib/docker/volumes/es-plugins/_data

 

4)重启容器

 # 4、重启容器
docker restart es

 # 查看es日志
docker logs -f es

5)测试:

IK分词器包含两种模式:

  • ik_smart:最少切分

  • ik_max_word:最细切分

GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "黑马程序员学习java太棒了"
}

 结果:

{
  "tokens" : [
    {
      "token" : "黑马",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "程序员",
      "start_offset" : 2,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 1
    },
    {
      "token" : "程序",
      "start_offset" : 2,
      "end_offset" : 4,
      "type" : "CN_WORD",
      "position" : 2
    },
    {
      "token" : "员",
      "start_offset" : 4,
      "end_offset" : 5,
      "type" : "CN_CHAR",
      "position" : 3
    },
    {
      "token" : "学习",
      "start_offset" : 5,
      "end_offset" : 7,
      "type" : "CN_WORD",
      "position" : 4
    },
    {
      "token" : "java",
      "start_offset" : 7,
      "end_offset" : 11,
      "type" : "ENGLISH",
      "position" : 5
    },
    {
      "token" : "太棒了",
      "start_offset" : 11,
      "end_offset" : 14,
      "type" : "CN_WORD",
      "position" : 6
    },
    {
      "token" : "太棒",
      "start_offset" : 11,
      "end_offset" : 13,
      "type" : "CN_WORD",
      "position" : 7
    },
    {
      "token" : "了",
      "start_offset" : 13,
      "end_offset" : 14,
      "type" : "CN_CHAR",
      "position" : 8
    }
  ]
}

3.3 扩展词词典

 

相关文章:

微服务学习:SpringCloud+RabbitMQ+Docker+Redis+搜索+分布式

目录 一、高级篇 二、面试篇 实用篇 day05-Elasticsearch01 安装elasticsearch 1.部署单点es 2.部署kibana 一、高级篇 二、面试篇 实用篇 day05-Elasticsearch01 安装elasticsearch 1.部署单点es 1.1.创建网络 因为我们还需要部署kibana容器,因此需要…...

nginx平滑升级

1.平滑升级操作1.1 备份安装目录下的nginxcd /usr/local/nginx/sbin mv nginx nginx.bak1.2 复制objs目录下的nginx到当前sbin目录下cp /opt/software/nginx/nginx-1.20.2/objs/nginx /usr/local/nginx/sbin/1.3 发送信号user2给nginx老版本对应的进程kill -user2 more /usr/lo…...

高可用的“异地多活”架构设计

前言 后台服务可以划分为两类,有状态和无状态。高可用对于无状态的应用来说是比较简单的,无状态的应用,只需要通过 F5 或者任何代理的方式就可以很好的解决。后文描述的主要是针对有状态的服务进行分析。 服务端进行状态维护主要是通过磁盘…...

【面试题】Map和Set

1. Map和Object的区别 形式不同 // Object var obj {key1: hello,key2: 100,key3: {x: 100} } // Map var m new Map([[key1, hello],[key2, 100],[key3, {x: 100}] ])API不同 // Map的API m.set(name, 小明) // 新增 m.delete(key2) // 删除 m.has(key3) // …...

Spring之事务底层源码解析

Spring之事务底层源码解析 1、EnableTransactionManagement工作原理 开启 Spring 事务本质上就是增加了一个 Advisor,当我们使用 EnableTransactionManagement 注解来开启 Spring 事务时,该注解代理的功能就是向 Spring 容器中添加了两个 Bean&#xf…...

【华为OD机试真题 Python】创建二叉树

前言:本专栏将持续更新华为OD机试题目,并进行详细的分析与解答,包含完整的代码实现,希望可以帮助到正在努力的你。关于OD机试流程、面经、面试指导等,如有任何疑问,欢迎联系我,wechat:steven_moda;email:nansun0903@163.com;备注:CSDN。 题目描述 请按下列描达构建…...

RuoYi-Vue-Plus搭建(若依)

项目简介 1.RuoYi-Vue-Plus 是重写 RuoYi-Vue 针对 分布式集群 场景全方位升级(不兼容原框架)2.环境安装参考:https://blog.csdn.net/tongxin_tongmeng/article/details/128167926 JDK 11、MySQL 8、Redis 6.X、Maven 3.8.X、Nodejs > 12、Npm 8.X3.IDEA环境配置…...

uboot和linux内核移植流程简述

一、移植uboot流程 1、从半导体芯片厂下载对应的demo,然后编译测试demo版的uboot 开发板基本都是参考半导体厂商的 dmeo 板,而半导体厂商会在他们自己的开发板上移植好 uboot、linux kernel 和 rootfs 等,最终制作好 BSP包提供给用户。我们可…...

【CS224W】(task2)传统图机器学习和特征工程

note 和CS224W课程对应,将图的基本表示写在task1笔记中了;传统图特征工程:将节点、边、图转为d维emb,将emb送入ML模型训练Traditional ML Pipeline Hand-crafted feature ML model Hand-crafted features for graph data Node-l…...

【算法基础】并查集⭐⭐⭐⭐⭐【思路巧,代码短,面试常考】

并查集,在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中。这一类问题近几年来反复出现在信息学的国际国内赛题中。其特点是看似并不复杂,但数据量…...

人工智能轨道交通行业周刊-第34期(2023.2.13-2.19)

本期关键词:智慧地铁、枕簧检测选配机器人、智慧工地、接触网检修、工业缺陷检测 1 整理涉及公众号名单 1.1 行业类 RT轨道交通人民铁道世界轨道交通资讯网铁路信号技术交流北京铁路轨道交通网上榜铁路视点ITS World轨道交通联盟VSTR铁路与城市轨道交通RailMetro…...

Retrofit 网络框架源码解析(二)

目录一、Okhttp请求二、Retrofit 请求retrofit是如何封装请求的三、Retrofit的构建过程四、Retrofit构建IxxxService对象的过程(Retrofit.create())4.1 动态代理4.2 ServiceMethod4.3 okHttpCall4.4 callAdapter五、Retrofit网络请求操作一、Okhttp请求 …...

SQL Server 2008新特性——更改跟踪

在大型的数据库应用中,经常会遇到部分数据的脱机和多个数据库的合并问题。比如现在有一个全省范围使用的应用程序,每个市都部署了单独的相同的应用程序服务器和数据库服务器,每个月需要将全省所有市的数据全部汇总起来用于出全省的报表&#…...

四六级真题长难句分析与应用

一、基本结构的长难句 基本结构的长难句主要考点:断开和简化 什么是长难句? 其实就是多件事连在了一块,这时候句子就变长、变难了 分析步骤: 第一件事就是要把长难句给断开,把多件事断开成一件一件的事情&#xff0…...

华为OD机试 - 玩牌高手(Python) | 机试题算法+思路 【2023】

最近更新的博客 华为OD机试 - 寻找路径 | 备考思路,刷题要点,答疑 【新解法】 华为OD机试 - 五键键盘 | 备考思路,刷题要点,答疑 【新解法】 华为OD机试 - IPv4 地址转换成整数 | 备考思路,刷题要点,答疑 【新解法】 华为OD机试 - 对称美学 | 备考思路,刷题要点,答疑 …...

【论文阅读】 Few-shot object detection via Feature Reweighting

Few-shot object detection的开山之作之一 ~~ 特征学习器使用来自具有足够样本的基本类的训练数据来 提取 可推广以检测新对象类的meta features。The reweighting module将新类别中的一些support examples转换为全局向量,该全局向量indicates meta features对于检…...

现代卷积神经网络经典架构图

卷积神经网络(LeNet) LeNet 的简化版深层卷积神经网络(AlexNet) 从LeNet(左)到AlexNet(右)改进: dropOut层 - 不改变期望但是改变方差ReLU层 - 减缓梯度消失MaxPooling数…...

有关eclipse的使用tips

一、alt/键 会产生单词提示,可以提高编程速度。例如不需要辛辛苦苦的打出:System.out.println();整句,只需要在eclipse中输入syso,然后按住ALT/就会出来System.out.println();在alt键/不管用的情况下,可使用以下方法来…...

Mybatis(4)之CRUD

首先是 增 &#xff0c;我们要在数据库中增加一个数据 先来看看我们之前的插入语句 <insert id"insertRole">insert into try(id,name,age) values(3,nuonuo,20)</insert> 请注意&#xff0c;我们这里的 insert 是固定的&#xff0c;但在实际的业务场…...

OSG三维渲染引擎编程学习之五十七:“第五章:OSG场景渲染” 之 “5.15 光照”

目录 第五章 OSG场景渲染 5.15 光照 5.15.1 osg::Light光 5.15.2 osg::LightSource光源 第五章 OSG场景渲染 OSG存在场景树和渲染树,“场景数”的构建在第三章“OSG场景组织”已详细阐明,本章开始深入探讨“渲染树”。 渲染树一棵以状态集(StateSet)和渲染叶(RenderLe…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

加密通信 + 行为分析:运营商行业安全防御体系重构

在数字经济蓬勃发展的时代&#xff0c;运营商作为信息通信网络的核心枢纽&#xff0c;承载着海量用户数据与关键业务传输&#xff0c;其安全防御体系的可靠性直接关乎国家安全、社会稳定与企业发展。随着网络攻击手段的不断升级&#xff0c;传统安全防护体系逐渐暴露出局限性&a…...

解析“道作为序位生成器”的核心原理

解析“道作为序位生成器”的核心原理 以下完整展开道函数的零点调控机制&#xff0c;重点解析"道作为序位生成器"的核心原理与实现框架&#xff1a; 一、道函数的零点调控机制 1. 道作为序位生成器 道在认知坐标系$(x_{\text{物}}, y_{\text{意}}, z_{\text{文}}…...