当前位置: 首页 > news >正文

【论文阅读】基于深度学习的时序预测——FEDformer

系列文章链接
论文一:2020 Informer:长时序数据预测
论文二:2021 Autoformer:长序列数据预测
论文三:2022 FEDformer:长序列数据预测
论文四:2022 Non-Stationary Transformers:非平稳性时序预测
论文五:2022 Pyraformer:基于金字塔图结构的时序预测
论文六:2023 Crossformer:多变量时序预测
论文七:2023 LSFT-Linear:质疑transformer能力的线性预测模型

论文地址:https://arxiv.org/abs/2201.12740
github地址:https://github.com/MAZiqing/FEDformer
参考解读:【ICML 2022】时间序列预测——FEDformer (Frequency Enhanced Decomposed Transformer)
快速傅立叶变换:快速傅立叶变换

本文是阿里达摩院的一篇文章,也是针对长序列预测的,文章背景有以下几点:

  1. 从前人的研究就可以看出,大部分研究都在考虑如何降低模型的计算复杂度,因为transformer的二次计算会导致过高的计算复杂度;
  2. 之前的研究都没有关注到时序数据的全局信息,但其实这是很重要的一点(Autoformer开始考虑时间序列分解的季节性&趋势分布序列);
    在这里插入图片描述

整体架构感觉和Autoformer有点类似,但是细节层面上的创新点主要体现在以下几个方面:

  • 频域时间序列表征(Compact Representation in Frequency Domain):采用傅立叶变换将时序数据转换到频域是比较常见的做法,这样能够更好地提取时序数据中的长期规律性特征;但是如果保留所有的频率分量会有很多噪声信息,因为很多高频分量都是噪声引起的,但是也不能仅保留低频分量,因为部分高频分量能够体现时序数据的分布趋势;对于时间序列 X = [ x 1 , . . . , x d ] X=[x_1,...,x_d] X=[x1,...,xd],采用FFT将序列转换成频域表示 A = [ a 1 , . . . , a m ] ∈ R m ∗ d A=[a_1,...,a_m]\in \mathbb{R}^{m*d} A=[a1,...,am]Rmd,虽然所有的频域表征能够充分表示数据信息,但是会存在很多冗余信息,所以问题提出了一种随机频域信息选择的方法,在每个频域表示的 d d d维数据中随机选择 s s s维作为代表( s < d s<d s<d),文中提到一个理论说明验证了这种随机选择后的表征信息量接近于原始表征,因此可以通过这种方式来简化计算。
    在这里插入图片描述如上图所示,先将时序数据 x x x通过多层感知机进行线性表征转换得到 q = x ∗ w q=x*w q=xw,然后采用傅立叶变换将数据转换成 Q Q Q,再进行随机采样得到 Q ~ \widetilde{Q} Q ,然后采用一个随机初始化的矩阵 R R R转换得到 Y ^ \hat{Y} Y^,在转换回时域前进行padding,最后进行逆变换从频域转换回时域;
    在这里插入图片描述
    在注意力机制运算中,仅计算随机选择后的注意力分布,能够简化计算;
  • 基于小波变换的频域增强模块:采用小波变换对序列进行分解,得到高频张量表示 U d ( L ) Ud(L) Ud(L)、低频张量 U s ( L ) Us(L) Us(L)和原始低频张量 X ( L + 1 ) X(L+1) X(L+1),然后基于三个分解数据进行重构,得到新的处理后的数据,细节不展开;
    在这里插入图片描述
    本文两个创新点的思路都是进行分解,然后进行数据重构。

相关文章:

【论文阅读】基于深度学习的时序预测——FEDformer

系列文章链接 论文一&#xff1a;2020 Informer&#xff1a;长时序数据预测 论文二&#xff1a;2021 Autoformer&#xff1a;长序列数据预测 论文三&#xff1a;2022 FEDformer&#xff1a;长序列数据预测 论文四&#xff1a;2022 Non-Stationary Transformers&#xff1a;非平…...

编写简单的.gitlab-ci.yml打包部署项目

服务器说明&#xff1a; 192.168.192.120&#xff1a;项目服务器 192.168.192.121&#xff1a;GitLab 为了可以使用gitlab的cicd功能&#xff0c;我们需要先安装GitLab Runner 安装GitLab Runner参考&#xff1a; GitLab实现CICD自动化部署_gitlab cidi_程序员xiaoQ的博客-CS…...

哪些CRM的报价公开且透明?

企业在选型时&#xff0c;会发现很多品牌的CRM系统价格并不透明&#xff0c;往往都是需要跟产品顾问沟通后才能了解。下面推荐一款价格实在的CRM系统&#xff0c;所有报价公开透明&#xff0c;那就是Zoho CRM。 Zoho CRM是什么&#xff1f; Zoho CRM是一款在线CRM软件&#x…...

springmvc下完成文件上传,使静态资源生效的三种方法

1.上传文件multipart/form-data才可以通过表单提交上传 如果要完成上传功能&#xff0c;必须要开启springmvc的配置功能 !--上传功能bean的id写死id"multipartResolver" class后面配置就是MultipartResolve手动打开上传适配器 1.文件上传实现步骤 1.配置springmvc文件…...

数据归一化:优化数据处理的必备技巧

文章目录 &#x1f340;引言&#x1f340;数据归一化的概念&#x1f340;数据归一化的应用&#x1f340;数据归一化的注意事项与实践建议&#x1f340;代码演示&#x1f340;在sklearn中使用归一化&#x1f340;结语 &#x1f340;引言 在当今数据驱动的时代&#xff0c;数据的…...

常量池-JVM(十九)

上篇文章说gc日志以及arthas。 Arthas & GC日志-JVM&#xff08;十八&#xff09; 一、常量池 常量池主要放两大类&#xff1a;字面量和符号引用。 字面量就是由字母、数字等构成的字符串或者数值常量。 符号引用主要包含三类常量。 类和接口的全限定名。字段的名称和…...

java+springboot+mysql智能社区管理系统

项目介绍&#xff1a; 使用javaspringbootmysql开发的社区住户综合管理系统&#xff0c;系统包含超级管理员、管理员、住户角色&#xff0c;功能如下&#xff1a; 超级管理员&#xff1a;管理员管理&#xff1b;住户管理&#xff1b;房屋管理&#xff08;楼栋、房屋&#xff…...

pve组网实现公网访问pve,访问电脑,访问pve中的openwrt同时经过openwrt穿透主路由地址nginx全公网访问最佳办法测试研究...

一台路由器 做主路由 工控机 装pve虚拟机 虚拟机里面装一个openwrt, 外网可以直接访问pve,可以访问pve里的openwrt 一台主机 可选择连 有4个口&#xff0c;分别eth0,eth1,eth2,eth3 pve有管理口 这个情况下 &#xff0c;没有openwrt 直接电脑和pve管理口连在一起就能进pve管理界…...

远程运维大批量IT设备?向日葵批量部署、分组授权与安全功能解析

数字化转型的不断推进&#xff0c;给予了企业全方位的赋能&#xff0c;但任何发展都伴随着成本与代价&#xff0c;比如在数字化转型过程中企业内部办公与外部业务所需的不断增加的IT设备数量&#xff0c;就为日常的运维工作提出了更大的挑战。 针对企业面对海量IT设备时的运维…...

Harbor内网离线安装使用HTTPS访问

重要提醒&#xff1a;使用的是域名形式访问Harbor。通过https://harbor.top访问网址。 1、首先在自己windows电脑 “此磁盘C->Windows->System32->drivers->etc” 修改hosts文件 添加“ip harbor.top”例如&#xff1a;“172.33.33.33 harbor.top” 2、进入内网服务…...

Python“牵手”京东工业商城商品详情数据方法介绍

京东工业平台&#xff08;imall.jd.com&#xff09;是一个 B2B 电商平台&#xff0c;提供了丰富的工业品类商品&#xff0c;涵盖了机械、化工、建材、劳保用品等品类。如果您需要采集京东工业平台的商品详情数据&#xff0c;可以尝试以下步骤&#xff1a; 选定目标品类和 SKU …...

接口测试意义及工作流程

一、为什么要做接口测试&#xff1f; 一&#xff09;、接口测试的作用 1、接口测试主要用于检测外部系统与系统之间以及内部各个子系统之间的交互。 2、测试的重点是要检查数据的交换&#xff0c;传递和控制管理过程&#xff0c;以及系统间的相互逻辑依赖关系等。 二&#…...

QT-如何使用RS232进行读写通讯

以下是一个使用Qt进行RS232通讯的具体示例&#xff0c;包括读取和写入数据的操作&#xff1a; #include <QCoreApplication> #include <QDebug> #include <QSerialPort> #include <QTimer>QSerialPort serial; // 串口对象void readData() {QByteArra…...

05 神经网络语言模型(独热编码+词向量的起源)

博客配套视频链接: https://space.bilibili.com/383551518?spm_id_from=333.1007.0.0 b 站直接看 配套 github 链接:https://github.com/nickchen121/Pre-training-language-model 配套博客链接:https://www.cnblogs.com/nickchen121/p/15105048.html 统计语言模型 统计+语…...

PyTorch Lightning教程八:用模型预测,部署

关于Checkpoints的内容在教程2里已经有了详细的说明&#xff0c;在本节&#xff0c;需要用它来利用模型进行预测 加载checkpoint并预测 使用模型进行预测的最简单方法是使用LightningModule中的load_from_checkpoint加载权重。 model LitModel.load_from_checkpoint("b…...

桂林小程序https证书

现在很多APP都相继推出了小程序&#xff0c;比如微信小程序、百度小程序等&#xff0c;这些小程序的功能也越来越复杂&#xff0c;不可避免的和网站一样会传输数据&#xff0c;因此小程序想要上线就要保证信息传输的安全性&#xff0c;也就是说各种类型的小程序也需要部署https…...

html input 设置不允许修改

要设置一个 HTML input 元素不允许修改&#xff0c;您可以添加 readonly 属性或将 disabled 属性设置为 true。这将禁用元素的编辑功能。 下面是几个示例&#xff1a; 使用 readonly 属性&#xff1a; <input type"text" readonly value"不允许修改的文本…...

BI技巧丨利用Index计算半累计

在实际的业务场景中&#xff0c;特别是财务模块和库存管理模块&#xff0c;经常需要我们针对每个月的期初期末进行相关指标计算&#xff0c;这也是我们之前曾经提到的Calculate基础应用——半累计计算。 现在我们也可以通过微软新推出的Index开窗函数来解决这一问题。 INDEX函…...

第三章:前端UI框架介绍

文章目录 一、Bootstrap1.1 Bootstrap简介及版本1.2 Bootstrap使用 二、AntDesign2.1 简介2.2 基本使用2.3 antd pro 三、ElementUI3.1 简介3.2 基本使用 四、Vant4.1 简介4.2 基本使用 一、Bootstrap 1.1 Bootstrap简介及版本 1、 简介 Bootstrap&#xff0c;来白 Twitter&a…...

javaScript:文档流写入和元素写入

目录 前言 文档流写入 把元素直接写入到文档流 注意​编辑 注意 元素写入 注意 innerHTML 特点&#xff1a; 设置内容 获取内容 innerText 特点&#xff1a; 注意 相关代码 前言 在JavaScript中&#xff0c;文档流写入是指将内容直接写入到DOM&#xff08;文档对…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器

——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的​​一体化测试平台​​&#xff0c;覆盖应用全生命周期测试需求&#xff0c;主要提供五大核心能力&#xff1a; ​​测试类型​​​​检测目标​​​​关键指标​​功能体验基…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

2024年赣州旅游投资集团社会招聘笔试真

2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么&#xff1f; WebAssembly&#xff08;WASM&#xff09; 是一种能在现代浏览器中高效运行的二进制指令格式&#xff0c;它不是传统的编程语言&#xff0c;而是一种 低级字节码格式&#xff0c;可由高级语言&#xff08;如 C、C、Rust&am…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.

ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #&#xff1a…...

从面试角度回答Android中ContentProvider启动原理

Android中ContentProvider原理的面试角度解析&#xff0c;分为​​已启动​​和​​未启动​​两种场景&#xff1a; 一、ContentProvider已启动的情况 1. ​​核心流程​​ ​​触发条件​​&#xff1a;当其他组件&#xff08;如Activity、Service&#xff09;通过ContentR…...

协议转换利器,profinet转ethercat网关的两大派系,各有千秋

随着工业以太网的发展&#xff0c;其高效、便捷、协议开放、易于冗余等诸多优点&#xff0c;被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口&#xff0c;具有实时性、开放性&#xff0c;使用TCP/IP和IT标准&#xff0c;符合基于工业以太网的…...