当前位置: 首页 > news >正文

Transformer架构

Transformer架构是一种重要的神经网络模型架构,最初由Vaswani等人在2017年提出,并在机器翻译任务上取得了显著的性能提升。Transformer架构在自然语言处理领域得到广泛应用,特别是在语言模型、机器翻译和文本生成等任务中。

Transformer架构的核心思想是使用自注意力机制(self-attention mechanism)来建立输入序列的表示。相比于传统的循环神经网络(RNN)架构,Transformer不需要按顺序逐步处理输入序列,而是可以并行地处理整个序列。

Transformer架构由两个主要组件组成:编码器(Encoder)和解码器(Decoder)。编码器负责将输入序列编码成一个表示,解码器则根据该表示生成输出序列。

编码器和解码器都由多个相同层级的模块堆叠而成。每个模块内部由两个子层组成:多头自注意力机制层(multi-head self-attention layer)和前馈神经网络层(feed-forward neural network layer)。

在自注意力机制中,输入序列中的每个位置都与其他位置进行交互,根据它们之间的相关性分配不同的权重。这有助于模型捕捉输入序列中的全局信息,并建立更好的表示。

前馈神经网络层则对每个位置的表示进行非线性变换和特征提取,进一步增强表示能力。

此外,Transformer还引入了位置编码(position encoding)来将序列中每个位置的信息与其相对位置关联起来。这允许模型辨识输入序列中的顺序信息。

在训练阶段,Transformer使用有监督学习的方式进行训练,通过最小化目标标签与模型生成序列之间的差异来调整模型参数。通常使用交叉熵损失函数进行优化。

Transformer架构的优势在于它可以处理较长的输入序列,并且由于并行化的设计,训练和推理速度较快。此外,自注意力机制使得模型能够捕捉输入序列中不同位置之间的依赖关系,增强了模型的表达和建模能力。

总而言之,Transformer架构是一种基于自注意力机制的神经网络模型架构,广泛用于自然语言处理任务。它的设计使得它在处理长文本序列时表现优秀,并取得了许多NLP任务的突破性进展。

相关文章:

Transformer架构

Transformer架构是一种重要的神经网络模型架构,最初由Vaswani等人在2017年提出,并在机器翻译任务上取得了显著的性能提升。Transformer架构在自然语言处理领域得到广泛应用,特别是在语言模型、机器翻译和文本生成等任务中。 Transformer架构…...

TVS二极管失效分析

摘要:常用电路保护器件的主要失效模式为短路,瞬变电压抑制器(TvS)亦不例外。TvS 一旦发生短路失效,释放出的高能量常常会将保护的电子设备损坏.这是 TvS 生产厂家和使用方都想极力减少或避免的情况。通过对 TVS 筛选和使用短路失效…...

k8s --pod详解

目录 一、Pod基础概念 1、pod简介 2、在Kubrenetes集群中Pod有如下两种使用方式 3、pause容器使得Pod中的所有容器可以共享两种资源:网络和存储。 (1)网络 (2)存储 4、kubernetes中的pause容器主要为每个容器提供…...

论文阅读---《Unsupervised ECG Analysis: A Review》

题目 无监督心电图分析一综述 摘要 电心图(ECG)是检测异常心脏状况的黄金标准技术。自动检测心电图异常有助于临床医生分析心脏监护仪每天产生的大量数据。由于用于训练监督式机器学习模型的带有心脏病专家标签的异常心电图样本数量有限,对…...

npm四种下载方式的区别

npm install moduleName 命令 安装模块到项目node_modules目录下。 不会将模块依赖写入devDependencies或dependencies 节点。 运行 npm install 初始化项目时不会下载模块。npm install -g moduleName 命令 安装模块到全局,不会在项目node_modules目录中保存模块包…...

04_Hudi 集成 Spark、保存数据至Hudi、集成Hive查询、MergeInto 语句

本文来自"黑马程序员"hudi课程 4.第四章 Hudi 集成 Spark 4.1 环境准备 4.1.1 安装MySQL 5.7.31 4.1.2 安装Hive 2.1 4.1.3 安装Zookeeper 3.4.6 4.1.4 安装Kafka 2.4.1 4.2 滴滴运营分析 4.2.1 需求说明 4.2.2 环境准备 4.2.2.1 工具类SparkUtils 4.2.2.2 日期转换…...

【ARM64 常见汇编指令学习 15 -- ARM 标志位的学习】

文章目录 ARM 标志位介绍Zero Condition flag(零标志位)零标志位判断实例 上篇文章:ARM64 常见汇编指令学习 14 – ARM 汇编 .balign,.balignw,.balign 伪指令学习 下篇文章:ARM64 常见汇编指令学习 16 – ARM64 SMC 指令 ARM 标志位介绍 在ARM架构中&am…...

【论文阅读】基于深度学习的时序预测——FEDformer

系列文章链接 论文一:2020 Informer:长时序数据预测 论文二:2021 Autoformer:长序列数据预测 论文三:2022 FEDformer:长序列数据预测 论文四:2022 Non-Stationary Transformers:非平…...

编写简单的.gitlab-ci.yml打包部署项目

服务器说明: 192.168.192.120:项目服务器 192.168.192.121:GitLab 为了可以使用gitlab的cicd功能,我们需要先安装GitLab Runner 安装GitLab Runner参考: GitLab实现CICD自动化部署_gitlab cidi_程序员xiaoQ的博客-CS…...

哪些CRM的报价公开且透明?

企业在选型时,会发现很多品牌的CRM系统价格并不透明,往往都是需要跟产品顾问沟通后才能了解。下面推荐一款价格实在的CRM系统,所有报价公开透明,那就是Zoho CRM。 Zoho CRM是什么? Zoho CRM是一款在线CRM软件&#x…...

springmvc下完成文件上传,使静态资源生效的三种方法

1.上传文件multipart/form-data才可以通过表单提交上传 如果要完成上传功能,必须要开启springmvc的配置功能 !--上传功能bean的id写死id"multipartResolver" class后面配置就是MultipartResolve手动打开上传适配器 1.文件上传实现步骤 1.配置springmvc文件…...

数据归一化:优化数据处理的必备技巧

文章目录 🍀引言🍀数据归一化的概念🍀数据归一化的应用🍀数据归一化的注意事项与实践建议🍀代码演示🍀在sklearn中使用归一化🍀结语 🍀引言 在当今数据驱动的时代,数据的…...

常量池-JVM(十九)

上篇文章说gc日志以及arthas。 Arthas & GC日志-JVM(十八) 一、常量池 常量池主要放两大类:字面量和符号引用。 字面量就是由字母、数字等构成的字符串或者数值常量。 符号引用主要包含三类常量。 类和接口的全限定名。字段的名称和…...

java+springboot+mysql智能社区管理系统

项目介绍: 使用javaspringbootmysql开发的社区住户综合管理系统,系统包含超级管理员、管理员、住户角色,功能如下: 超级管理员:管理员管理;住户管理;房屋管理(楼栋、房屋&#xff…...

pve组网实现公网访问pve,访问电脑,访问pve中的openwrt同时经过openwrt穿透主路由地址nginx全公网访问最佳办法测试研究...

一台路由器 做主路由 工控机 装pve虚拟机 虚拟机里面装一个openwrt, 外网可以直接访问pve,可以访问pve里的openwrt 一台主机 可选择连 有4个口,分别eth0,eth1,eth2,eth3 pve有管理口 这个情况下 ,没有openwrt 直接电脑和pve管理口连在一起就能进pve管理界…...

远程运维大批量IT设备?向日葵批量部署、分组授权与安全功能解析

数字化转型的不断推进,给予了企业全方位的赋能,但任何发展都伴随着成本与代价,比如在数字化转型过程中企业内部办公与外部业务所需的不断增加的IT设备数量,就为日常的运维工作提出了更大的挑战。 针对企业面对海量IT设备时的运维…...

Harbor内网离线安装使用HTTPS访问

重要提醒:使用的是域名形式访问Harbor。通过https://harbor.top访问网址。 1、首先在自己windows电脑 “此磁盘C->Windows->System32->drivers->etc” 修改hosts文件 添加“ip harbor.top”例如:“172.33.33.33 harbor.top” 2、进入内网服务…...

Python“牵手”京东工业商城商品详情数据方法介绍

京东工业平台(imall.jd.com)是一个 B2B 电商平台,提供了丰富的工业品类商品,涵盖了机械、化工、建材、劳保用品等品类。如果您需要采集京东工业平台的商品详情数据,可以尝试以下步骤: 选定目标品类和 SKU …...

接口测试意义及工作流程

一、为什么要做接口测试? 一)、接口测试的作用 1、接口测试主要用于检测外部系统与系统之间以及内部各个子系统之间的交互。 2、测试的重点是要检查数据的交换,传递和控制管理过程,以及系统间的相互逻辑依赖关系等。 二&#…...

QT-如何使用RS232进行读写通讯

以下是一个使用Qt进行RS232通讯的具体示例&#xff0c;包括读取和写入数据的操作&#xff1a; #include <QCoreApplication> #include <QDebug> #include <QSerialPort> #include <QTimer>QSerialPort serial; // 串口对象void readData() {QByteArra…...

WINUI——WINUI开发中谨慎使用x:Bind

原因——为什么需要谨慎使用x:Bind&#xff1f; 在实际开发中发现&#xff0c;使用它会导致VM回收不及时&#xff0c;可能导致内存泄漏。 那为何要在项目中使用它呢&#xff1f; 因为&#xff1a;{x&#xff1a;Bind} 标记扩展&#xff08;Windows 10 的新增功能&#xff09;…...

三级流水线是什么?

三级流水线是什么&#xff1f; “三级流水线” 英文名&#xff1a;Three-Stage Pipeline 或 Basic 3-Stage Pipeline&#xff0c;是计算机处理器&#xff08;CPU&#xff09;设计中一种基本的指令流水线技术&#xff0c;它将指令的执行过程划分为三个主要阶段&#xff0c;使得…...

opencv学习笔记2:卷积、均值滤波、中值滤波

目录 一、卷积概念 1.定义 2.数学原理 3.实例计算 &#xff08;1&#xff09; 输入与卷积核 &#xff08;2&#xff09;计算输出 g(2,2) 4.作用 二、针对图像噪声的滤波技术——均值滤波 1.均值滤波概念 &#xff08;1&#xff09;均值滤波作用 &#xff08;2&#…...

python爬虫:grequests的详细使用(基于gevent和requests的异步HTTP请求库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、grequests 概述1.1 grequests 介绍1.2 注意事项1.3 替代方案比较1.4 基本组件1.5 grequests 安装二、基本用法2.1 创建请求任务2.2 发送请求并获取响应2.3 带参数的请求三、高级用法3.1 自定义回调函数3.2 设置超时…...

【选配电脑】CPU核显工作机控制预算5000

【选配电脑】CPU核显工作机控制预算5000 1.背景2.配置及估价3.选配的说明 1.背景 不需要独立显卡&#xff0c;内存&#xff0c;硬盘尽量大&#xff1b; 预算控制到5000&#xff0c; 主板型号&#xff0c;电源功率支持后续添加独立显卡。 时间节点&#xff1a;2025.06.07 2.配…...

Linux 的 find 命令使用指南

精通 Linux 的 find 命令:终极使用指南 在 Linux 系统中,find 命令是文件搜索的瑞士军刀,它能基于多种条件在目录树中精准定位文件。无论你是系统管理员还是开发者,掌握 find 都能极大提升工作效率。本文将深入解析 find 的核心用法,并附赠实用示例! 一、基础语法结构 …...

机器学习:聚类算法及实战案例

本文目录&#xff1a; 一、聚类算法介绍二、分类&#xff08;一&#xff09;根据聚类颗粒度分类&#xff08;二&#xff09;根据实现方法分类 三、聚类流程四、K值的确定—肘部法&#xff08;一&#xff09;SSE-误差平方和&#xff08;二&#xff09;肘部法确定 K 值 五、代码重…...

压测软件-Jmeter

1 下载和安装 1.1 检查运行环境 Jmeter需要运行在java环境&#xff08;JRE 或 JDK&#xff09;中 在window的"命令提示窗"查看安装的java版本: java -version 1.2 下载Jmeter 从Apache官网下载Jmeter安装包 1.3 解压和运行 解压后,进入bin文件夹,双击jmeter.bat即可…...

xcode 各版本真机调试包下载

下载地址 https://github.com/filsv/iOSDeviceSupport 使用方法&#xff1a; 添加到下面路径中&#xff0c;然后退出重启xcode /Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/DeviceSupport...

基于VMD-LSTM融合方法的F10.7指数预报

F10.7 Daily Forecast Using LSTM Combined With VMD Method ​​F10.7​​ solar radiation flux is a well-known parameter that is closely linked to ​​solar activity​​, serving as a key index for measuring the level of solar activity. In this study, the ​​…...