Transformer架构
Transformer架构是一种重要的神经网络模型架构,最初由Vaswani等人在2017年提出,并在机器翻译任务上取得了显著的性能提升。Transformer架构在自然语言处理领域得到广泛应用,特别是在语言模型、机器翻译和文本生成等任务中。
Transformer架构的核心思想是使用自注意力机制(self-attention mechanism)来建立输入序列的表示。相比于传统的循环神经网络(RNN)架构,Transformer不需要按顺序逐步处理输入序列,而是可以并行地处理整个序列。
Transformer架构由两个主要组件组成:编码器(Encoder)和解码器(Decoder)。编码器负责将输入序列编码成一个表示,解码器则根据该表示生成输出序列。
编码器和解码器都由多个相同层级的模块堆叠而成。每个模块内部由两个子层组成:多头自注意力机制层(multi-head self-attention layer)和前馈神经网络层(feed-forward neural network layer)。
在自注意力机制中,输入序列中的每个位置都与其他位置进行交互,根据它们之间的相关性分配不同的权重。这有助于模型捕捉输入序列中的全局信息,并建立更好的表示。
前馈神经网络层则对每个位置的表示进行非线性变换和特征提取,进一步增强表示能力。
此外,Transformer还引入了位置编码(position encoding)来将序列中每个位置的信息与其相对位置关联起来。这允许模型辨识输入序列中的顺序信息。
在训练阶段,Transformer使用有监督学习的方式进行训练,通过最小化目标标签与模型生成序列之间的差异来调整模型参数。通常使用交叉熵损失函数进行优化。
Transformer架构的优势在于它可以处理较长的输入序列,并且由于并行化的设计,训练和推理速度较快。此外,自注意力机制使得模型能够捕捉输入序列中不同位置之间的依赖关系,增强了模型的表达和建模能力。
总而言之,Transformer架构是一种基于自注意力机制的神经网络模型架构,广泛用于自然语言处理任务。它的设计使得它在处理长文本序列时表现优秀,并取得了许多NLP任务的突破性进展。
相关文章:
Transformer架构
Transformer架构是一种重要的神经网络模型架构,最初由Vaswani等人在2017年提出,并在机器翻译任务上取得了显著的性能提升。Transformer架构在自然语言处理领域得到广泛应用,特别是在语言模型、机器翻译和文本生成等任务中。 Transformer架构…...
TVS二极管失效分析
摘要:常用电路保护器件的主要失效模式为短路,瞬变电压抑制器(TvS)亦不例外。TvS 一旦发生短路失效,释放出的高能量常常会将保护的电子设备损坏.这是 TvS 生产厂家和使用方都想极力减少或避免的情况。通过对 TVS 筛选和使用短路失效…...
k8s --pod详解
目录 一、Pod基础概念 1、pod简介 2、在Kubrenetes集群中Pod有如下两种使用方式 3、pause容器使得Pod中的所有容器可以共享两种资源:网络和存储。 (1)网络 (2)存储 4、kubernetes中的pause容器主要为每个容器提供…...
论文阅读---《Unsupervised ECG Analysis: A Review》
题目 无监督心电图分析一综述 摘要 电心图(ECG)是检测异常心脏状况的黄金标准技术。自动检测心电图异常有助于临床医生分析心脏监护仪每天产生的大量数据。由于用于训练监督式机器学习模型的带有心脏病专家标签的异常心电图样本数量有限,对…...
npm四种下载方式的区别
npm install moduleName 命令 安装模块到项目node_modules目录下。 不会将模块依赖写入devDependencies或dependencies 节点。 运行 npm install 初始化项目时不会下载模块。npm install -g moduleName 命令 安装模块到全局,不会在项目node_modules目录中保存模块包…...
04_Hudi 集成 Spark、保存数据至Hudi、集成Hive查询、MergeInto 语句
本文来自"黑马程序员"hudi课程 4.第四章 Hudi 集成 Spark 4.1 环境准备 4.1.1 安装MySQL 5.7.31 4.1.2 安装Hive 2.1 4.1.3 安装Zookeeper 3.4.6 4.1.4 安装Kafka 2.4.1 4.2 滴滴运营分析 4.2.1 需求说明 4.2.2 环境准备 4.2.2.1 工具类SparkUtils 4.2.2.2 日期转换…...
【ARM64 常见汇编指令学习 15 -- ARM 标志位的学习】
文章目录 ARM 标志位介绍Zero Condition flag(零标志位)零标志位判断实例 上篇文章:ARM64 常见汇编指令学习 14 – ARM 汇编 .balign,.balignw,.balign 伪指令学习 下篇文章:ARM64 常见汇编指令学习 16 – ARM64 SMC 指令 ARM 标志位介绍 在ARM架构中&am…...
【论文阅读】基于深度学习的时序预测——FEDformer
系列文章链接 论文一:2020 Informer:长时序数据预测 论文二:2021 Autoformer:长序列数据预测 论文三:2022 FEDformer:长序列数据预测 论文四:2022 Non-Stationary Transformers:非平…...
编写简单的.gitlab-ci.yml打包部署项目
服务器说明: 192.168.192.120:项目服务器 192.168.192.121:GitLab 为了可以使用gitlab的cicd功能,我们需要先安装GitLab Runner 安装GitLab Runner参考: GitLab实现CICD自动化部署_gitlab cidi_程序员xiaoQ的博客-CS…...
哪些CRM的报价公开且透明?
企业在选型时,会发现很多品牌的CRM系统价格并不透明,往往都是需要跟产品顾问沟通后才能了解。下面推荐一款价格实在的CRM系统,所有报价公开透明,那就是Zoho CRM。 Zoho CRM是什么? Zoho CRM是一款在线CRM软件&#x…...
springmvc下完成文件上传,使静态资源生效的三种方法
1.上传文件multipart/form-data才可以通过表单提交上传 如果要完成上传功能,必须要开启springmvc的配置功能 !--上传功能bean的id写死id"multipartResolver" class后面配置就是MultipartResolve手动打开上传适配器 1.文件上传实现步骤 1.配置springmvc文件…...
数据归一化:优化数据处理的必备技巧
文章目录 🍀引言🍀数据归一化的概念🍀数据归一化的应用🍀数据归一化的注意事项与实践建议🍀代码演示🍀在sklearn中使用归一化🍀结语 🍀引言 在当今数据驱动的时代,数据的…...
常量池-JVM(十九)
上篇文章说gc日志以及arthas。 Arthas & GC日志-JVM(十八) 一、常量池 常量池主要放两大类:字面量和符号引用。 字面量就是由字母、数字等构成的字符串或者数值常量。 符号引用主要包含三类常量。 类和接口的全限定名。字段的名称和…...
java+springboot+mysql智能社区管理系统
项目介绍: 使用javaspringbootmysql开发的社区住户综合管理系统,系统包含超级管理员、管理员、住户角色,功能如下: 超级管理员:管理员管理;住户管理;房屋管理(楼栋、房屋ÿ…...
pve组网实现公网访问pve,访问电脑,访问pve中的openwrt同时经过openwrt穿透主路由地址nginx全公网访问最佳办法测试研究...
一台路由器 做主路由 工控机 装pve虚拟机 虚拟机里面装一个openwrt, 外网可以直接访问pve,可以访问pve里的openwrt 一台主机 可选择连 有4个口,分别eth0,eth1,eth2,eth3 pve有管理口 这个情况下 ,没有openwrt 直接电脑和pve管理口连在一起就能进pve管理界…...
远程运维大批量IT设备?向日葵批量部署、分组授权与安全功能解析
数字化转型的不断推进,给予了企业全方位的赋能,但任何发展都伴随着成本与代价,比如在数字化转型过程中企业内部办公与外部业务所需的不断增加的IT设备数量,就为日常的运维工作提出了更大的挑战。 针对企业面对海量IT设备时的运维…...
Harbor内网离线安装使用HTTPS访问
重要提醒:使用的是域名形式访问Harbor。通过https://harbor.top访问网址。 1、首先在自己windows电脑 “此磁盘C->Windows->System32->drivers->etc” 修改hosts文件 添加“ip harbor.top”例如:“172.33.33.33 harbor.top” 2、进入内网服务…...
Python“牵手”京东工业商城商品详情数据方法介绍
京东工业平台(imall.jd.com)是一个 B2B 电商平台,提供了丰富的工业品类商品,涵盖了机械、化工、建材、劳保用品等品类。如果您需要采集京东工业平台的商品详情数据,可以尝试以下步骤: 选定目标品类和 SKU …...
接口测试意义及工作流程
一、为什么要做接口测试? 一)、接口测试的作用 1、接口测试主要用于检测外部系统与系统之间以及内部各个子系统之间的交互。 2、测试的重点是要检查数据的交换,传递和控制管理过程,以及系统间的相互逻辑依赖关系等。 二&#…...
QT-如何使用RS232进行读写通讯
以下是一个使用Qt进行RS232通讯的具体示例,包括读取和写入数据的操作: #include <QCoreApplication> #include <QDebug> #include <QSerialPort> #include <QTimer>QSerialPort serial; // 串口对象void readData() {QByteArra…...
利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...
装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
ServerTrust 并非唯一
NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...
BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
关于 WASM:1. WASM 基础原理
一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...
Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统
💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「storms…...
适应性Java用于现代 API:REST、GraphQL 和事件驱动
在快速发展的软件开发领域,REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名,不断适应这些现代范式的需求。随着不断发展的生态系统,Java 在现代 API 方…...
32单片机——基本定时器
STM32F103有众多的定时器,其中包括2个基本定时器(TIM6和TIM7)、4个通用定时器(TIM2~TIM5)、2个高级控制定时器(TIM1和TIM8),这些定时器彼此完全独立,不共享任何资源 1、定…...
