OpenCV实例(八)车牌字符识别技术(三)汉字识别
车牌字符识别技术(三)汉字识别
- 1.代码实例
- 2.遇到问题
- 3.汉字识别代码实例
相较于数字和英文字符的识别,汽车牌照中的汉字字符识别的难度更大,主要原因有以下4个方面:
(1)字符笔画因切分误差导致非笔画或笔画流失。
(2)汽车牌照被污染导致字符上出现污垢。
(3)采集所得车辆图像分辨率低导致多笔画的汉字较难分辨。
(4)车辆图像采集时所受光照影响的差异导致笔画较淡。
综合汉字识别时的这些难点来看,很难被直接提取的是字符的局部特征。笔画作为最重要的特征而仅存在于汉字中,这由先验知识可知。一旦捺、横、竖、撇这些笔画特征被提取到,对于汉字字符识别的工作就完成了许多。在水平方向上,横笔画的灰度值的波动表现为低频,竖笔画的灰度变化表现为低频;在垂直方向上,横笔画的灰度变化表现为高频,竖笔画的灰度变化表现为高频。在汉字字符特征的提取过程中,对于小波的多分辨率特性的利用显然是一个不错的选择。
对于汉字进识别的相关工作,在一系列对图像进行预处理以及对图像的特征进行提取等相关操作后就可以进行了。第一步是预处理原始图像;第二步是对字符的原始特征进行提取(主要通过小波变换进行),并降维处理原始特征(主要采用线性判别式分析(LDA)变换矩阵进行),获取字符的最终特征;第三步是在特征模板匹配和最小距离分类器中读入获取所得到的最终特征,得到字符的最终识别结果。
1.代码实例
中文车牌的识别(包括新能源汽车)
import cv2 as cv
from PIL import Image
import pytesseract as tessdef recoginse_text(image):"""步骤:1、灰度,二值化处理2、形态学操作去噪3、识别:param image::return:"""# 灰度 二值化gray = cv.cvtColor(image,cv.COLOR_BGR2GRAY)# 如果是白底黑字 建议 _INVret,binary = cv.threshold(gray,0,255,cv.THRESH_BINARY_INV| cv.THRESH_OTSU)# 形态学操作 (根据需要设置参数(1,2))kernel = cv.getStructuringElement(cv.MORPH_RECT,(1,2)) #去除横向细线morph1 = cv.morphologyEx(binary,cv.MORPH_OPEN,kernel)kernel = cv.getStructuringElement(cv.MORPH_RECT, (2, 1)) #去除纵向细线morph2 = cv.morphologyEx(morph1,cv.MORPH_OPEN,kernel)cv.imshow("Morph",morph2)# 黑底白字取非,变为白底黑字(便于pytesseract 识别)cv.bitwise_not(morph2,morph2)textImage = Image.fromarray(morph2)# 图片转文字text=tess.image_to_string(textImage)n=10 #根据不同国家车牌固定数目进行设置print("识别结果:")print(text[1:n])def main():# 读取需要识别的数字字母图片,并显示读到的原图src = cv.imread("cp.jpg")cv.imshow("src",src)# 识别recoginse_text(src)cv.waitKey(0)cv.destroyAllWindows()if __name__=="__main__":main()
2.遇到问题
No module named ‘pytesseract’
缺少pytesseract 模块。
在环境中安装该模块
安装完成运行程序,结果又出现了一堆问题:
原因是没有安装pytesseract需要的Tesseract-OCR工具,Windows版本的安装包的下载路径为https://github.com/UB-Mannheim/tesseract/wiki
直接双击该文件进行安装即可。这里的安装位置(这个路径要记住,后面要用)采用默认值:
C:\Program Files\Tesseract-OCR
配置pytesseract.py打开“我的计算机”,进入\Users==\AppData\Local\Programs\Python\Python38\Lib\site-packages\pytesseract\,找到pytesseract.py文件,用文本编辑器打开这个文件,找到"tesseract_cmd"关键字
至此,字符识别开发环境准备好了,下面就可以编写代码了。
代码实例:
import cv2 as cv
from PIL import Image
import pytesseract as tessdef recoginse_text(image):"""步骤:1、灰度,二值化处理2、形态学操作去噪3、识别:param image::return:"""# 灰度 二值化gray = cv.cvtColor(image,cv.COLOR_BGR2GRAY)# 如果是白底黑字 建议 _INVret,binary = cv.threshold(gray,0,255,cv.THRESH_BINARY_INV| cv.THRESH_OTSU)# 形态学操作 (根据需要设置参数(1,2))kernel = cv.getStructuringElement(cv.MORPH_RECT,(1,2)) #去除横向细线morph1 = cv.morphologyEx(binary,cv.MORPH_OPEN,kernel)kernel = cv.getStructuringElement(cv.MORPH_RECT, (2, 1)) #去除纵向细线morph2 = cv.morphologyEx(morph1,cv.MORPH_OPEN,kernel)cv.imshow("Morph",morph2)# 黑底白字取非,变为白底黑字(便于pytesseract 识别)cv.bitwise_not(morph2,morph2)textImage = Image.fromarray(morph2)# 图片转文字text=tess.image_to_string(textImage)n=10 #根据不同国家车牌固定数目进行设置print("识别结果:")print(text[1:n])def main():# 读取需要识别的数字字母图片,并显示读到的原图src = cv.imread("cp.jpg")cv.imshow("src",src)# 识别recoginse_text(src)cv.waitKey(0)cv.destroyAllWindows()if __name__=="__main__":main()
3.汉字识别代码实例
代码实例
import tkinter as tk
from tkinter.filedialog import *
from tkinter import ttk
import predict
import cv2
from PIL import Image, ImageTk
import threading
import timeclass Surface(ttk.Frame):pic_path = ""viewhigh = 600viewwide = 600update_time = 0thread = Nonethread_run = Falsecamera = Nonecolor_transform = {"green":("绿牌","#55FF55"), "yello":("黄牌","#FFFF00"), "blue":("蓝牌","#6666FF")}def __init__(self, win):ttk.Frame.__init__(self, win)frame_left = ttk.Frame(self)frame_right1 = ttk.Frame(self)frame_right2 = ttk.Frame(self)win.title("车牌识别")win.state("zoomed")self.pack(fill=tk.BOTH, expand=tk.YES, padx="5", pady="5")frame_left.pack(side=LEFT,expand=1,fill=BOTH)frame_right1.pack(side=TOP,expand=1,fill=tk.Y)frame_right2.pack(side=RIGHT,expand=0)ttk.Label(frame_left, text='原图:').pack(anchor="nw") ttk.Label(frame_right1, text='车牌位置:').grid(column=0, row=0, sticky=tk.W)from_pic_ctl = ttk.Button(frame_right2, text="来自图片", width=20, command=self.from_pic)from_vedio_ctl = ttk.Button(frame_right2, text="来自摄像头", width=20, command=self.from_vedio)self.image_ctl = ttk.Label(frame_left)self.image_ctl.pack(anchor="nw")self.roi_ctl = ttk.Label(frame_right1)self.roi_ctl.grid(column=0, row=1, sticky=tk.W)ttk.Label(frame_right1, text='识别结果:').grid(column=0, row=2, sticky=tk.W)self.r_ctl = ttk.Label(frame_right1, text="")self.r_ctl.grid(column=0, row=3, sticky=tk.W)self.color_ctl = ttk.Label(frame_right1, text="", width="20")self.color_ctl.grid(column=0, row=4, sticky=tk.W)from_vedio_ctl.pack(anchor="se", pady="5")from_pic_ctl.pack(anchor="se", pady="5")self.predictor = predict.CardPredictor()self.predictor.train_svm()def get_imgtk(self, img_bgr):img = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)im = Image.fromarray(img)imgtk = ImageTk.PhotoImage(image=im)wide = imgtk.width()high = imgtk.height()if wide > self.viewwide or high > self.viewhigh:wide_factor = self.viewwide / widehigh_factor = self.viewhigh / highfactor = min(wide_factor, high_factor)wide = int(wide * factor)if wide <= 0 : wide = 1high = int(high * factor)if high <= 0 : high = 1im=im.resize((wide, high), Image.ANTIALIAS)imgtk = ImageTk.PhotoImage(image=im)return imgtkdef show_roi(self, r, roi, color):if r :roi = cv2.cvtColor(roi, cv2.COLOR_BGR2RGB)roi = Image.fromarray(roi)self.imgtk_roi = ImageTk.PhotoImage(image=roi)self.roi_ctl.configure(image=self.imgtk_roi, state='enable')self.r_ctl.configure(text=str(r))self.update_time = time.time()try:c = self.color_transform[color]self.color_ctl.configure(text=c[0], background=c[1], state='enable')except: self.color_ctl.configure(state='disabled')elif self.update_time + 8 < time.time():self.roi_ctl.configure(state='disabled')self.r_ctl.configure(text="")self.color_ctl.configure(state='disabled')def from_vedio(self):if self.thread_run:returnif self.camera is None:self.camera = cv2.VideoCapture(0)if not self.camera.isOpened():mBox.showwarning('警告', '摄像头打开失败!')self.camera = Nonereturnself.thread = threading.Thread(target=self.vedio_thread, args=(self,))self.thread.setDaemon(True)self.thread.start()self.thread_run = Truedef from_pic(self):self.thread_run = Falseself.pic_path = askopenfilename(title="选择识别图片", filetypes=[("jpg图片", "*.jpg")])if self.pic_path:img_bgr = predict.imreadex(self.pic_path)self.imgtk = self.get_imgtk(img_bgr)self.image_ctl.configure(image=self.imgtk)resize_rates = (1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4)for resize_rate in resize_rates:print("resize_rate:", resize_rate)try:r, roi, color = self.predictor.predict(img_bgr, resize_rate)except:continueif r:break#r, roi, color = self.predictor.predict(img_bgr, 1)self.show_roi(r, roi, color)@staticmethoddef vedio_thread(self):self.thread_run = Truepredict_time = time.time()while self.thread_run:_, img_bgr = self.camera.read()self.imgtk = self.get_imgtk(img_bgr)self.image_ctl.configure(image=self.imgtk)if time.time() - predict_time > 2:r, roi, color = self.predictor.predict(img_bgr)self.show_roi(r, roi, color)predict_time = time.time()print("run end")def close_window():print("destroy")if surface.thread_run :surface.thread_run = Falsesurface.thread.join(2.0)win.destroy()if __name__ == '__main__':win=tk.Tk()surface = Surface(win)win.protocol('WM_DELETE_WINDOW', close_window)win.mainloop()
输出结果:
相关文章:

OpenCV实例(八)车牌字符识别技术(三)汉字识别
车牌字符识别技术(三)汉字识别 1.代码实例2.遇到问题3.汉字识别代码实例 相较于数字和英文字符的识别,汽车牌照中的汉字字符识别的难度更大,主要原因有以下4个方面: (1)字符笔画因切分误差导致非笔画或笔画流失。 (2…...

运维监控学习笔记2
硬件监控: 1)使用IPMI 2)机房巡检 路由器和交换机: 使用SNMP(简单网络管理协议)进行监控。 Linux 安装snmp: yum install -y net-snmp net-snmp-utils 说明:net-snmp是安装在snm…...

【深度学习】遗传算法[选择、交叉、变异、初始化种群、迭代优化、几何规划排序选择、线性交叉、非均匀变异]
目录 一、遗传算法二、遗传算法概述2.1 选择2.2 交叉2.3 变异 三、遗传算法的基本步骤3.1 编码3.2 初始群体的生成3.3 适应度评估3.4 选择3.5 交叉3.6 变异3.7 总结 四、遗传算法工具箱4.1 initializega4.2 ga4.3 normGeomSelect4.4 arithXover4.5 nonUnifMutation 五、遗传算法…...

【小吉带你学Git】讲解GitHub操作,码云操作,GitLab操作
🎊专栏【Git】 🍔喜欢的诗句:更喜岷山千里雪 三军过后尽开颜。 🎆音乐分享【如愿】 🌺欢迎并且感谢大家指出小吉的问题🥰 文章目录 🍔GitHub操作⭐安装GitHub插件⭐在idea中设置GitHub账号&…...
nginx基础
nginx 具体就是一个轻量级以及高性能的web服务软件。 nginx特点 1、稳定性高。(但不如apache) 2、系统资源消耗比较低。(处理http请求的并发能力较高,单台处理器可以处理3w-5w的并发请求) 注:一般在企…...

【Windows API】获取卷标、卷名
1、卷->卷标 使用FindFirstVolume()和FindNextVolume()函数体系,枚举系统所有卷(Volume)的例子,然后获取卷标、卷类型。这个方式可以枚举出没有驱动器号(卷标)的卷。 int TestMode1() {HANDLE hVolume…...

通过MATLAB自动产生Hamming编译码的verilog实现,包含testbench
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 1. 原理 1.1 编码规则 1.2 错误检测和纠正 2. 实现过程 2.1 编码过程 2.2 解码过程 3. 应用领域 3.1 数字通信 3.2 存储系统 3.3 ECC内存 3.4 数据传输 5.算法完整程序工程 1.算法…...

swager web服务无法显示问题
如果指定了扫描其他包 那么web文件夹里面的就扫描不到 需要加上扫描扫描web的 ,默认什么也没有就会扫描web文件夹 但是其他模块的扫描不到 指定了扫描其他模块就需要再次指定扫描该web文件夹...
代码随想录训练营day18 二叉树
106. 从中序与后序遍历序列构造二叉树 给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。 //左根右 左右根/* 第一步:如果数组大小为零的…...

图像的平移变换之c++实现(qt + 不调包)
1.基本原理 设dx为水平偏移量,dy为垂直偏移量,则平移变换的坐标映射关系为下公式,图像平移一般有两种方式。 1.不改变图像大小的平移(一旦平移,相应内容被截掉) 1)当dx > width、dx < -wi…...

云原生K8S------Yaml文件详解
目录 一:K8S支持的文件格式 1,yaml和json的主要区别 2,YAML语言格式 二:yuml 1、查看 api 资源版本标签 2、写一个yaml文件demo 3、创建service服务对外提供访问并测试 4、详解k8s中的port 三:文件生成 1、kubec…...
测试开发环境安装
安装python运行环境 下载地址:链接 http://python.p2hp.com/downloads/windows/index.html 选择合适自己的版,我下载的3.8.10的进行安装 安装码编辑器Pychrom 下载地址:链接 https://www.jetbrains.com/pycharm/ 拉到最下面可以下载社区版…...

微信小程序如何引入Iconfont
在小程序中引入 Iconfont 可以通过以下步骤进行操作: 打开 Iconfont 网站(https://www.iconfont.cn/)并登录账号,创建一个项目并添加所需的图标到项目中。 在项目中选中需要使用的图标,点击右上角的 “下载代码” 按钮…...

php使用get和post传递数据出现414 Request-URI Too Large的解决方案
递数据出现414 Request-URI Too Large的解决方案 一、Request-URI Too Large的原因二、GET与POST三、项目分析1.读取源数据2.将读取的到数据,进行传递3.ajax获取传递的数据并传递到后台4.传递数据5.解决方案 一、Request-URI Too Large的原因 “Request-URI Too La…...
复现大华智慧园区综合管理平台SQL注入漏洞
目录 一、漏洞描述 二、影响版本 三、资产测绘 四、漏洞复现 一、漏洞描述 大华智慧园区综合管理平台是一个集智能化、信息化、网络化、安全化为一体的智慧园区管理平台,旨在为园区提供一站式解决方案,包括安防、能源管理、环境监测、人员管理、停车管理等多个方面。大华…...

【uniapp】uniapp设置安全区域:
文章目录 一、效果图:二、实现代码: 一、效果图: 二、实现代码: {"path": "pages/index/index","style": {"navigationStyle": "custom","navigationBarTextStyle": "white","navigationBarTitle…...

Grafana技术文档--基本安装-docker安装并挂载数据卷-《十分钟搭建》-附带监控服务器
阿丹: Prometheus技术文档--基本安装-docker安装并挂载数据卷-《十分钟搭建》_一单成的博客-CSDN博客 在正确安装了Prometheus之后开始使用并安装Grafana作为Prometheus的仪表盘。 一、拉取镜像 搜索可拉取版本 docker search Grafana拉取镜像 docker pull gra…...
24大连交通大学软件工程813题库
1.下面错误的说法是( )。 A. 每个数据流必须用名词或名词短语命名 B.每个加工必须有名字,通常是动词短语 c.每个数据存储必须用名词或名词短语 D.每个数据源点或终点必须有名字 答案:C 2.下…...
数据治理-组织变革
为什么要有组织变革 组织变更的原因是,数据管理,对大多数企业而言,意味着原有的思维理念、工作模式、写作方式和信息技术的改变。这些改变无法依赖单纯的技术创新优化实现,而是通过组织管理的变更来实现。 数据管理成功实践的机制…...
html的语义化
说说对 html 语义化的理解 去掉或者丢失样式的时候能够让页面呈现出清晰的结构有利于 SEO:和搜索引擎建立良好沟通,有助于爬虫抓取更多的有效信息:爬虫依赖于标签来确定上下文和各个关键字的权重;方便其他设备解析(如屏…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...

12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...

selenium学习实战【Python爬虫】
selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)
参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

uniapp手机号一键登录保姆级教程(包含前端和后端)
目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号(第三种)后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...

02.运算符
目录 什么是运算符 算术运算符 1.基本四则运算符 2.增量运算符 3.自增/自减运算符 关系运算符 逻辑运算符 &&:逻辑与 ||:逻辑或 !:逻辑非 短路求值 位运算符 按位与&: 按位或 | 按位取反~ …...