当前位置: 首页 > news >正文

栈和队列详解

目录

栈的概念及结构:

 栈的实现:

 代码实现:

Stack.h

stack.c

 队列:

概念及结构:

 队列的实现:

 代码实现:

Queue.h

Queue.c

 拓展:

循环队列(LeetCode题目链接):

栈的概念及结构:

:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。

       进行数据插入和删除操作的一端称为栈顶,另一端称为栈底

       栈中的数据元素遵守“先进后出/后进先出”的原则。
压栈栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶
出栈栈的删除操作叫做出栈。出数据也在栈顶

 “先进后出/后进先出”示意图:

 栈的实现:

 一般可以使用数组或者链表实现,相对而言数组的结构实现更优一些。因为数组在尾上插入数据的代价比较小。

 代码实现:

Stack.h
#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>typedef int STDataType;
typedef struct Stack
{STDataType* a;int top;//栈顶int capacity;//容量
}ST;
//初始化
void STInit(ST* ps);
//销毁
void STDestroy(ST* ps);
//入栈
void STPush(ST* ps, STDataType x);
//出栈
void STPop(ST* ps);
//取栈顶元素
STDataType STTop(ST* ps);
//数据个数
int STSize(ST* ps);
//判空
bool STEmpty(ST* ps);
stack.c
#include"Stack.h"
//初始化
void STInit(ST* ps)
{assert(ps);ps->a = NULL;ps->capacity = 0;ps->top = 0;
}
//销毁
void STDestroy(ST* ps)
{free(ps->a);ps->a = NULL;ps->capacity = 0;ps->top = 0;
}
//入栈
void STPush(ST* ps, STDataType x)
{assert(ps);if (ps->capacity == ps->top){int newcapacity = ps->capacity == 0 ? 4 : ps->capacity * 2;STDataType* p = (STDataType*)realloc(ps->a, sizeof(STDataType) * newcapacity);ps->a = p;ps->capacity = newcapacity;}ps->a[ps->top] = x;ps->top++;
}//出栈
void STPop(ST* ps)
{assert(ps);assert(ps->a);assert(!STEmpty(ps));ps->top--;
}
//取栈顶元素
STDataType STTop(ST* ps)
{assert(ps);assert(ps->a);assert(!STEmpty(ps));return ps->a[ps->top - 1];
}
//数据个数
int STSize(ST* ps)
{assert(ps);assert(ps->a);return ps->top;
}
//判空
bool STEmpty(ST* ps)
{assert(ps);return ps->top == 0;
}

测试代码:

#include"Stack.h"
int main()
{ST p1;STInit(&p1);int i = 0;//入栈for (i = 1; i <= 10; i++){STPush(&p1, i);}printf("栈中数据数量:%d\n", STSize(&p1));//出栈for (i = 0; i < 5; i++){STDataType a = STTop(&p1);printf("%d ", a);STPop(&p1);}printf("\n");printf("栈顶元素:%d\n", STTop(&p1));printf("栈中数据数量:%d\n", STSize(&p1));STDestroy(&p1);return 0;
}

运行结果:

 队列:

概念及结构:

队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有“先             进先出/后进后出”的特点。

入队列:进行插入操作的一端称为队尾。

出队列:进行删除操作的一端称为队头。

​​​​​​​“先进先出/后进后出”示意图: 

 队列的实现:

队列也可以数组和链表的结构实现,使用链表的结构实现更优一些,因为如果使用数组的结构在出队时的效率会比较低

 代码实现:

Queue.h
#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>typedef int QDataType;
typedef struct QueueNode
{struct QueueNode* next;QDataType data;
}QNode;typedef struct Queue
{QNode* head;QNode* tail;int size;
}Que;
//初始化
void QueueInit(Que* pq);
//销毁
void QueueDestroy(Que* pq);
//入队
void QueuePush(Que* pq, QDataType x);
//出队
void QueuePop(Que* pq);
//取队头
QDataType QueueFront(Que* pq);
//取队尾
QDataType QueueBack(Que* pq);
//判空
bool QueueEmpty(Que* pq);
//有效数据
int QueueSize(Que* pq);
Queue.c
#include"Queue.h"//初始化
void QueueInit(Que* pq)
{assert(pq);pq->head = NULL;pq->tail = NULL;pq->size = 0;
}
//销毁
void QueueDestroy(Que* pq)
{assert(pq);QNode* cur = pq->head;while (cur){QNode* p = cur->next;free(cur);cur = p;}pq->head = NULL;pq->tail = NULL;pq->size = 0;
}
//入队
void QueuePush(Que* pq, QDataType x)
{assert(pq);QNode* newnode = (QNode*)malloc(sizeof(QNode));if (newnode == NULL){perror("malloc failed");exit(-1);}newnode->data = x;newnode->next = NULL;if (pq->head == NULL){pq->head = newnode;pq->tail = newnode;}else{pq->tail->next = newnode;pq->tail = newnode;}pq->size++;
}
//出队
void QueuePop(Que* pq)
{assert(pq);assert(!QueueEmpty(pq));//要有数据if (pq->head->next == NULL)//只有一个节点{free(pq->head);pq->head = NULL;pq->tail = NULL;}else{QNode* cur = pq->head->next;free(pq->head);pq->head = cur;}pq->size--;
}
//取队头
QDataType QueueFront(Que* pq)
{assert(pq);assert(!QueueEmpty(pq));return pq->head->data;
}
//取队尾
QDataType QueueBack(Que* pq)
{assert(pq);assert(!QueueEmpty(pq));return pq->tail->data;
}
//判空 :空返回1,非空返回0
bool QueueEmpty(Que* pq)
{assert(pq);return pq->head == NULL;
}
//有效数据
int QueueSize(Que* pq)
{assert(pq);return pq->size;
}

代码测试:

#include"Queue.h"
int main()
{Que p2;QueueInit(&p2);int i = 0;//入队for (i = 11; i <= 20; i++){QueuePush(&p2, i);}printf("队列中数据数量:%d\n", QueueSize(&p2));//出队for (i = 0; i < 7; i++){QDataType a = QueueFront(&p2);printf("%d ", a);QueuePop(&p2);}printf("\n");printf("队头元素:%d 队尾元素:%d\n", QueueFront(&p2), QueueBack(&p2));printf("队列中数据数量:%d\n", QueueSize(&p2));QueueDestroy(&p2);return 0;
}

运行实例:

 拓展:

循环队列(LeetCode题目链接):

循环队列是一种线性数据结构,其操作表现基于普通队列“先进先出”原则并且队尾被连接在队首之后以形成一个循环。它也被称为“环形缓冲器”。

循环队列的一个好处是我们可以利用这个队列之前用过的空间。在一个普通队列里,一旦一个队列满了,我们就不能插入下一个元素,即使在队列前面仍有空间。但是使用循环队列,我们能使用这些空间去存储新的值。

循环队列可以使用数组实现,也可以使用循环链表实现。

以循环链表实现为例:

 若仅仅是需要几个空间就创建几个空间,则空和满两种情况将无法区分,因此我们可以比实际需要多创建一个空间,这一个多创建出来空间不存储数据,则有如下情况:

 则满和空两种情况就可以区分出来了:front=rear-->空

                                                              rear的下一个=front-->满

同时为了方便取队尾数据,可以定义一个全局变量指向队尾位置(即rear指向位置的前一个)。

具体代码实现:

typedef struct List
{int val;struct List*next;
}list;
typedef struct 
{list*front;list*rear;
} MyCircularQueue;
list*tail;//定义一个全局变量记录rear的前一个
MyCircularQueue* myCircularQueueCreate(int k)
{MyCircularQueue* obj = (MyCircularQueue*)malloc(sizeof(MyCircularQueue));if (obj == NULL){perror("malloc failed");exit(-1);}obj->front = NULL;obj->rear = NULL;int n = k + 1;while (n--){list* new = (list*)malloc(sizeof(list));if (new == NULL){perror("malloc failed");exit(-1);}new->val = 0;new->next = obj->front;if (obj->front == NULL){obj->front = new;obj->rear = new;}else{obj->rear->next = new;tail=new;obj->rear = obj->rear->next;}}  obj->rear=obj->front;return obj;
}
//判空:空返回真,非空返回假
bool myCircularQueueIsEmpty(MyCircularQueue* obj) 
{return obj->front==obj->rear;
}
//是否已满:已满返回真,不满返回假
bool myCircularQueueIsFull(MyCircularQueue* obj)
{return obj->rear->next==obj->front;
}
//插入数据:插入成功返回真,失败返回假
bool myCircularQueueEnQueue(MyCircularQueue* obj, int value) 
{assert(obj);if(myCircularQueueIsFull(obj))//已满{return false;}else{obj->rear->val=value;obj->rear=obj->rear->next;tail=tail->next;return true;}
}
//从队列中删除元素
bool myCircularQueueDeQueue(MyCircularQueue* obj) 
{assert(obj);if(myCircularQueueIsEmpty(obj)){return false;}else{obj->front=obj->front->next;return true;}
}
//获取对首元素
int myCircularQueueFront(MyCircularQueue* obj) 
{assert(obj);if(myCircularQueueIsEmpty(obj)){return -1;}return obj->front->val;
}
//获取队尾元素
int myCircularQueueRear(MyCircularQueue* obj) 
{assert(obj);if(myCircularQueueIsEmpty(obj)){return -1;}/*list*cur=obj->front;while(cur->next!=obj->rear){cur=cur->next;}return cur->val;*/return tail->val;
}
//释放空间
void myCircularQueueFree(MyCircularQueue* obj) 
{while(obj->front!=obj->rear){list*Next=obj->front->next;free(obj->front);obj->front=Next;}free(obj->rear);free(obj);
}

 利用数组也可以实现,与链表类似在创建空间是同样需要多创建一个,但是因为队头、队尾没有链接关系,所以利用数组实现时与利用循环链表实现会有所不同:

 与循环链表类似,用数组实现循环队列时,当rear=front时,队列为空;在判断队列是否满时,虽然也是用rear的下一个等于front(即rear+1==front),但是不能单单使用 rear+1==front 判断,因为数组实现时,队首和队尾没有链接关系,当rear在数组最后一个位置时,循环队列已满,但rear+1会越界往后访问,且当front在数组最后一个位置时,删除数据后执行front+1也会出现越界访问的问题,出现错误,因此应想办法让rear和front都在数组范围内变化

观察数组下标,可以让rear+1和front+1都模上k+1,问题就能很好解决。

具体代码实现:

typedef struct
{int k;int front;int rear;int* queue;
} MyCircularQueue;MyCircularQueue* myCircularQueueCreate(int k)
{MyCircularQueue* obj = (MyCircularQueue*)malloc(sizeof(MyCircularQueue));if (obj == NULL){perror("malloc failed");exit(-1);}obj->k = k;obj->front = 0;obj->rear = 0;obj->queue = (int*)malloc(sizeof(int) * (k + 1));if (obj->queue == NULL){perror("malloc failed");exit(-1);}return obj;
}
//判空:空返回真,非空返回假
bool myCircularQueueIsEmpty(MyCircularQueue* obj)
{return obj->rear == obj->front;
}
//是否已满:已满返回真,不满返回假
bool myCircularQueueIsFull(MyCircularQueue* obj)
{return (obj->rear + 1) % (obj->k + 1) == obj->front;
}
//插入数据:插入成功返回真,失败返回假
bool myCircularQueueEnQueue(MyCircularQueue* obj, int value)
{assert(obj);if (myCircularQueueIsFull(obj))//已满{return false;}else{obj->queue[obj->rear] = value;obj->rear = (obj->rear + 1) % (obj->k + 1);return true;}
}
//从队列中删除元素
bool myCircularQueueDeQueue(MyCircularQueue* obj)
{assert(obj);if (myCircularQueueIsEmpty(obj)){return false;}else{obj->front = (obj->front + 1) % (obj->k + 1);return true;}
}
//获取对首元素
int myCircularQueueFront(MyCircularQueue* obj)
{assert(obj);if (myCircularQueueIsEmpty(obj)){return -1;}return obj->queue[obj->front];
}
//获取队尾元素
int myCircularQueueRear(MyCircularQueue* obj)
{assert(obj);if (myCircularQueueIsEmpty(obj)){return -1;}return obj->queue[(obj->rear + obj->k) % (obj->k + 1)];
}
//释放空间
void myCircularQueueFree(MyCircularQueue* obj)
{free(obj->queue);obj->queue = NULL;free(obj);
}

相关文章:

栈和队列详解

目录 栈 栈的概念及结构&#xff1a; 栈的实现&#xff1a; 代码实现&#xff1a; Stack.h stack.c 队列&#xff1a; 概念及结构&#xff1a; 队列的实现&#xff1a; 代码实现&#xff1a; Queue.h Queue.c 拓展&#xff1a; 循环队列&#xff08;LeetCode题目链接&#xff0…...

数据结构 | 树的定义及实现

目录 一、树的术语及定义 二、树的实现 2.1 列表之列表 2.2 节点与引用 一、树的术语及定义 节点&#xff1a; 节点是树的基础部分。它可以有自己的名字&#xff0c;我们称作“键”。节点也可以带有附加信息&#xff0c;我们称作“有效载荷”。有效载荷信息对于很多树算法…...

Delphi7通过VB6之COM对象调用FreeBASIC写的DLL功能

VB6写ActiveX COM组件比较方便&#xff0c;不仅PowerBASIC与VB6兼容性好&#xff0c;Delphi7与VB6兼容性也不错&#xff0c;但二者与FreeBASIC兼容性在字符串处理上差距比较大&#xff0c;FreeBASIC是C化的语言&#xff0c;可直接使用C指令。下面还是以实现MKI/CVI, MKL/CVL, M…...

【Linux 网络】NAT技术——缓解IPv4地址不足

NAT技术 NAT 技术背景NAT IP转换过程NAPTNAT 技术的缺陷 NAT&#xff08;Network Address Translation&#xff0c;网络地址转换&#xff09;技术&#xff0c;是解决IP地址不足的主要手段&#xff0c;并且能够有效地避免来自网络外部的攻击&#xff0c;隐藏并保护网络内部的计算…...

Flink 两阶段提交(Two-Phase Commit)协议

Flink 两阶段提交&#xff08;Two-Phase Commit&#xff09;是指在 Apache Flink 流处理框架中&#xff0c;为了保证分布式事务的一致性而采用的一种协议。它通常用于在流处理应用中处理跨多个分布式数据源的事务性操作&#xff0c;确保所有参与者&#xff08;数据源或计算节点…...

【Docker晋升记】No.2 --- Docker工具安装使用、命令行选项及构建、共享和运行容器化应用程序

文章目录 前言&#x1f31f;一、Docker工具安装&#x1f31f;二、Docker命令行选项&#x1f30f;2.1.docker run命令选项&#xff1a;&#x1f30f;2.2.docker build命令选项&#xff1a;&#x1f30f;2.3.docker images命令选项&#xff1a;&#x1f30f;2.4.docker ps命令选项…...

[OnWork.Tools]系列 00-目录

OnWork.Tools系列文章目录 OnWork.Tools系列 01-简介_末叶的博客-CSDN博客OnWork.Tools系列 02-安装_末叶的博客-CSDN博客OnWork.Tools系列 03-软件设置_末叶的博客-CSDN博客OnWork.Tools系列 04-快捷启动_末叶的博客-CSDN博客OnWork.Tools系列 05-系统工具_末叶的博客-CSDN博…...

Cadvisor+InfluxDB+Grafan+Prometheus(详解)

目录 一、CadvisorInfluxDBGrafan案例概述 &#xff08;一&#xff09;Cadvisor Cadvisor 产品特点&#xff1a; &#xff08;二&#xff09;InfluxDB InfluxDB应用场景&#xff1a; InfluxDB主要功能&#xff1a; InfluxDB主要特点&#xff1a; &#xff08;三&#…...

AtcoderABC222场

A - Four DigitsA - Four Digits 题目大意 给定一个整数N&#xff0c;其范围在0到9999之间&#xff08;包含边界&#xff09;。在将N转换为四位数的字符串后&#xff0c;输出它。如果N的位数不足四位&#xff0c;则在前面添加必要数量的零。 思路分析 可以使用输出流的格式设…...

架构实践方法

一、识别复杂度 将主要的复杂度问题列出来&#xff0c;然后根据业务、技术、团队等综合情况进行排序&#xff0c;优先解决当前面临的最主要的复杂度问题。对于按照复杂度优先级解决的方式&#xff0c;存在一个普遍的担忧&#xff1a;如果按照优先级来解决复杂度&#xff0c;可…...

点淘的MCN机构申请详细入驻指南!

消费趋势的变化&#xff0c;来自消费人群的变化。 后疫情时代&#xff0c;经济复苏的反弹力度不足&#xff0c;人们开始怀疑我们正从前几年的消费升级&#xff0c;跌入消费降级的时代&#xff0c;但这并不能准确概括消费市场的变化。 仔细翻看各大奢侈品集团的财报&#xff0…...

事务和事务的隔离级别

1.4.事务和事务的隔离级别 1.4.1.为什么需要事务 事务是数据库管理系统&#xff08;DBMS&#xff09;执行过程中的一个逻辑单位&#xff08;不可再进行分割&#xff09;&#xff0c;由一个有限的数据库操作序列构成&#xff08;多个DML语句&#xff0c;select语句不包含事务&…...

每日一题 34在排序数组中查找元素的第一个和最后一个位置(二分查找)

题目 给你一个按照非递减顺序排列的整数数组 nums&#xff0c;和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。 如果数组中不存在目标值 target&#xff0c;返回 [-1, -1]。 你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。 示例 1&…...

Spring Boot Admin 环境搭建与基本使用

Spring Boot Admin 环境搭建与基本使用 一、Spring Boot Admin是什么二、提供了那些功能三、 使用Spring Boot Admin3.1搭建Spring Boot Admin服务pom文件yml配置文件启动类启动admin服务效果 3.2 common-apipom文件feignhystrix 3.3服务消费者pom文件yml配置文件启动类control…...

JVM之内存模型

1. Java内存模型 很多人将Java 内存结构与java 内存模型傻傻分不清&#xff0c;java 内存模型是 Java Memory Model&#xff08;JMM&#xff09;的意思。 简单的说&#xff0c;JMM 定义了一套在多线程读写共享数据时&#xff08;成员变量、数组&#xff09;时&#xff0c;对数据…...

音视频 vs2017配置FFmpeg

vs2017 ffmpeg4.2.1 一、首先我把FFmpeg整理了一下&#xff0c;放在C盘 二、新建空项目 三、添加main.cpp&#xff0c;将bin文件夹下dll文件拷贝到cpp目录下 #include<stdio.h> #include<iostream>extern "C" { #include "libavcodec/avcodec.h&…...

【项目管理】PMP备考宝典-第二章《环境》

第一节&#xff1a;概述 1.项目所处的组织环境 &#xff08;1&#xff09;事业环境因素&#xff08;EEFs&#xff09; 组织内部的事业环境因素&#xff1a; 企业都会有愿景、使命、价值观&#xff0c;这些决定了企业的发展方向。不忘初心&#xff0c;坚定地走自己的路&#…...

ELK 将数据流转换回常规索引

ELK 将数据流转换回常规索引 现象&#xff1a;创建索引模板是打开了数据流&#xff0c;导致不能创建常规索引&#xff0c;并且手动修改、删除索引模板失败 "reason" : "composable template [logs_template] with index patterns [new-pattern*], priority [2…...

jackson库收发json格式数据和ajax发送json格式的数据

一、jackson库收发json格式数据 jackson库是maven仓库中用来实现组织json数据功能的库。 json格式  json格式一个组织数据的字符文本格式&#xff0c;它用键值对的方式存贮数据&#xff0c;json数据都是有一对对键值对组成的&#xff0c;键只能是字符串&#xff0c;用双引号包…...

ubuntu安装和卸载CLion

安装 在https://www.jetbrains.com/clion/download/#sectionlinux下载相应版本的安装包&#xff0c;解压之后&#xff0c;找到解压文件夹中的bin文件夹运行./clion.sh 卸载 使用sudo rm -rf删除以下内容&#xff1b;并把刚刚解压的文件删掉 ~/.config/JetBrains ~/.local/s…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇&#xff0c;在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下&#xff1a; 【Note】&#xff1a;如果你已经完成安装等操作&#xff0c;可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作&#xff0c;重…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

线程同步:确保多线程程序的安全与高效!

全文目录&#xff1a; 开篇语前序前言第一部分&#xff1a;线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分&#xff1a;synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec&#xff1f; IPsec VPN 5.1 IPsec传输模式&#xff08;Transport Mode&#xff09; 5.2 IPsec隧道模式&#xff08;Tunne…...