当前位置: 首页 > news >正文

【云原生•监控】基于Prometheus实现自定义指标弹性伸缩(HPA)

【云原生•监控】基于Prometheus实现自定义指标弹性伸缩(HPA)

什么是弹性伸缩

「Autoscaling即弹性伸缩,是Kubernetes中的一种非常核心的功能,它可以根据给定的指标(例如 CPU 或内存)自动缩放Pod副本,从而可以更好地管理和利用计算资源,提高系统的可用性和性能,同时减少开销和成本。弹性伸缩可以解决服务负载存在较大波动或资源实际使用与预估之间的差距。」

在Kubernetes集群中提供了三种弹性伸缩技术:

  • 「CA(Cluster Autoscaler)」:Node级别自动扩/缩容

  • 「HPA(Horizontal Pod Autoscaler)」:Pod个数自动扩/缩容

  • 「VPA(Vertical Pod Autoscaler)」:Pod配置自动扩/缩容,主要是CPU、内存配置

「Node自动扩/缩容」

Cluster AutoScaler定期检测是否有充足的资源来调度新创建的Pod,当资源不足时会调用Cloud Provider创建新的Node。Cluster AutoScaler也会定期监测 Node的资源使用情况,当一个Node长时间资源利用率都很低时(低于50%)自动将其所在虚拟机从集群中删除。此时,原来的Pod会自动调度到其他Node上面。

Node的增减可能会影响整个kubernetes集群的稳定性,一旦出现问题会影响整个集群上部署的所有业务程序,所以,生产中针对Node节点的扩缩容一般还是谨慎使用,当确实需要对Node进行扩缩容时,往往通过人工执行脚本完成。

「Pod的垂直扩/缩容(VPA)」

VPA全称Vertical Pod Autoscaler,即Pod的垂直自动伸缩,它根据容器资源使用率自动设置CPU和内存的requests,从而允许在节点上进行适当的调度,以便为每个Pod提供适当的资源。它既可以缩小过度请求资源的容器,也可以根据其使用情况随时提升资源不足的容量。

「目前,VPA技术成熟度还不够,是Kubernetes比较新的功能,更新正在运行的Pod资源配置是VPA的一项试验性功能,会导致Pod的重建和重启,而且有可能被调度到其他的节点上。」

「Pod的水平扩/缩容(HPA)」

HPA全称Horizontal Pod Autoscaler,即Pod的水平自动伸缩,根据资源利用率或者自定义指标自动调整Pod的副本数,实现Pod的扩容、缩容,让部署的规模接近于实际服务的负载。

HPA弹性伸缩原理

Horizontal Pod Autoscaler功能最初是在Kubernetes 1.1中引入并不断发展,目前HPA已经支持了autoscaling/v1autoscaling/v2beta1autoscaling/v2beta2三个大版本。

常规场景下,比如晚上业务压力较小情况下,可以使用kubectl scale指令将Pod副本数设置为1;当白天上班高分期业务压力大时使用kubectl scale指令将Pod的副本数设置为3,但这些操作都是人为介入执行的。而HPA控制器则是基于业务的指标判断业务忙闲自动基于算法计算出当前多少Pod副本数运行比较合适,自动调整Pod的副本数。

8366363f74e827cd2723dd45c7862989.png

Kubernetes HPA v2相对于v1版本进行了一些重大改进。其中最显著的改进是引入了「多指标」自动扩缩容,即可以同时根据多种指标(如 CPU使用率、内存使用率、网络负载等)来进行自动扩缩容决策。此外,HPA v2还增加了支持「自定义指标」的能力,使得用户可以根据自己的需求定义和使用自己的指标。总的来说,Kubernetes HPA v2是一个更加成熟、更加灵活和可定制的自动扩缩容机制。

「HPA弹性伸缩的核心机制:自动根据业务忙闲来调整业务工作负载的副本数。这里主要涉及到两个关键点:」

  • 「如何识别业务的忙闲程度」

  • 「使用控制Pod副本数调整」

e72f53ede7e5d0aeea35baa4d57f9af0.png

「我们先来看下第一个问题:如何识别业务的忙闲程度?」

之前介绍kubernetes集群监控时介绍过metrics-server组件可以从集群中所有节点的kubelet组件中cAdvisor上获取到底层容器运行时指标,然后聚合后就可以通过kubectl top node/pod查看CPU、内存资源使用情况,也可以通过kubectl get --raw /apis/metrics.k8s.io/v1beta1/nodes 接口访问访问获取。所以,HPA控制器可以通过metrics-server组件获取Pod的CPU、内存使用率识别业务忙闲。

Kubernestes 1.7引入了聚合层(Aggregator),允许第三方应用程序通过注册自己为API插件来扩展Kubernestes API。metrics-server组件注册到聚合层然后就可以像访问kube-apiserver接口一样访问metrics-server后端服务的接口。

Kubernetes在kube-apiserver服务中引入了一个API聚合层,用于将扩展API的访问请求转发到用户服务的功能。比如,当你访问apis/metrics.k8s.io/v1beta1的时候,aggregator组件会基于groupversion转发到后端metrics-server服务上,聚合层只是相当于代理层。通过这种方式,我们就可以很方便地扩展KubernetesAPI

从metrics-server获取CPU、内存指标比较单一,kubernetes集群监控事实标准是prometheus,如果可以从prometheus获取指标用来识别业务忙闲程度,弹性伸缩灵活性就会大大增加。prometheus-adapter组件就可以实现这个功能,它从prometheus拉取指标转换成kubernetes api接口识别的数据格式,并将其注册到聚合层,这样kubernetes集群中其它服务就可以通过/apis/访问。

「再来看第二个问题:如何控制Pod副本数调整?」

HPA控制器会定期执行每个HPA对象的reconcile方法,主要包含如何操作:

  • 获取当前指标数据:从metrics-server获取CPU使用率、内存使用率或从prometheus-adapter获取自定义指标数据;

  • Pod副本数计算:将获取的指标数据和目标期望比较,判断是要扩容、缩容还是不变,若不需要要进行扩缩容调整就直接返回当前副本数,否则才使用HPA metrics 目标类型对应的算法来计算出deployment的目标副本数;

  • 更新Pod副本数:如果上步骤计算出的Pod目标副本数与当前副本数量不一致时,即需要进行扩/缩容的情况,则HPA控制器就向Deploymen发起scale操作,调整当前副本数,完成扩/缩容操作;

  • 监控调整效果:最终实现尽可能将deployment下的每个pod的最终metrics指标(平均值)基本维持到用户期望的水平,HPA会继续监控新的Pod副本数量对指标数据的影响,并根据需要进行进一步的调整。

reconcile定时间隔默认15秒,可以通过horizontal-pod-autoscaler-sync-period配置。

基于CPU指标的HPA

HPA v1版本支持CPU使用率、内存使用率的弹性伸缩,内存使用率一般缓存影响很难真实反映系统负载,所以,一般使用CPU使用率指标来进行弹性伸缩。容器的CPU使用率可以通过聚合层API代理到后端metrics-server服务,metrics-server向所有的kubelet组件发送请求,通过cAdvisor收集到所有容器的CPU、内存运行信息,这样HPA控制器就可以获取到Pod的CPU使用率,然后基于CPU使用率进行弹性伸缩。

2dc24d9cf5f4bc1e403ce6fcba3960f3.png

「1、基于Deployment创建Pod:」

#vi deploy-for-hpa_cpu.yml
apiVersion: apps/v1
kind: Deployment
metadata:name: web
spec:replicas: 1selector:matchLabels:app: nginx-phptemplate:metadata:labels:app: nginx-phpspec:containers:- image: lizhenliang/nginx-phpname: javaresources: requests:memory: "300Mi"cpu: "250m"
---
apiVersion: v1
kind: Service
metadata:name: web
spec:ports:- port: 80protocol: TCPtargetPort: 80selector:app: nginx-php

「2、创建:」

[root@k8s-01 autoscaling]# kubectl apply -f deploy-for-hpa_cpu.yml -n demo01
[root@k8s-01 autoscaling]# kubectl get pod -n demo01
NAME                                  READY   STATUS    RESTARTS   AGE
web-84885d5959-fbtxt                 1/1     Running   0          29s

「3、HPA策略文件:」

# vi hpa_for_cpu.yml
apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:name: web
spec:#扩/缩容副本范围maxReplicas: 3minReplicas: 1#指定扩容的DeploymentscaleTargetRef: apiVersion: apps/v1kind: Deploymentname: webtargetCPUUtilizationPercentage: 60

targetCPUUtilizationPercentage: 60 表示:当Pod整体的资源利用率超过60%的时候,会进行扩容。

「4、创建HPA:」

[root@k8s-01 autoscaling]# kubectl apply -f hpa_for_cpu.yml -n demo01
horizontalpodautoscaler.autoscaling/web created
[root@k8s-01 autoscaling]# kubectl get hpa -n demo01
NAME              REFERENCE                       TARGETS   MINPODS   MAXPODS   REPLICAS   AGE
web               Deployment/web                  0%/60%    1         3         1          44s

TARGETS一栏显示指标情况,前面0%表示当前Pod得到整体CPU资源使用率,因为没有任何HTTP请求,所以是0%;60%则是扩/缩容阈值。

MINPODS、MAXPODS:指定hpa扩/缩容

「5、压测:」

[root@k8s-01 autoscaling]# yum install httpd-tools
[root@k8s-01 autoscaling]# kubectl get svc -n demo01
NAME                 TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)    AGE
web                  ClusterIP   10.96.237.204   <none>        80/TCP     5d20h
[root@k8s-01 autoscaling]# ab -n 100000 -c 100  http://10.96.237.204/status.php

「6、观察扩/缩容:」

压测几十秒后,查看hpa后发现整体CPU使用率173%,超过60%目标值,但是replicas还是1,并没有扩容:

[root@k8s-01 autoscaling]# kubectl get hpa -n demo01
NAME              REFERENCE                       TARGETS    MINPODS   MAXPODS   REPLICAS   AGE
metrics-app-hpa   Deployment/sample-httpserver2   200m/2     1         3         1          46h
web               Deployment/web                  173%/60%   1         3         1          75s

再等会查看到replicas=3,触发了扩容操作:

[root@k8s-01 autoscaling]# kubectl get hpa -n demo01
NAME              REFERENCE                       TARGETS   MINPODS   MAXPODS   REPLICAS   AGE
metrics-app-hpa   Deployment/sample-httpserver2   200m/2    1         3         1          46h
web               Deployment/web                  15%/60%   1         3         3          76s

查看Pod信息:

[root@k8s-01 autoscaling]# kubectl get pod -n demo01
NAME                                 READY   STATUS    RESTARTS   AGE
web-84885d5959-d9l4h                 1/1     Running   0          90s
web-84885d5959-fbtxt                 1/1     Running   0          6m9s
web-84885d5959-xgn4n                 1/1     Running   0          90s

kubectl describe hpa信息,可以看到有一条副本数扩到3的消息事件:

198c1adbd66c3202aaab4d34cef185ff.png

停止压测后,CPU使用率压力会降下来,大概等个几分钟后,又会触发缩容操作,replicas又会被设置成1:

[root@k8s-01 autoscaling]# kubectl get hpa -n demo01         
NAME              REFERENCE                       TARGETS   MINPODS   MAXPODS   REPLICAS   AGE
web               Deployment/web                  0%/60%    1         3         1          7m59s

kubectl describe hpa查看hpa信息,会发现有两条缩容消息事件,一条显示是副本数从3缩容到2消息事件,另一条显示副本数从2缩容到1消息事件:

54c0e34e74c688ec30d826663a3c76d0.png

基于Prometheus自定义指标的HPA

基于metrics-server组件获取的CPU使用率、内存使用率弹性伸缩灵活性稍差,如果想根据自定义指标,如HTTP请求的QPS、5XX错误数等,在云原生领域监控基本就是Prometheus。自定义指标由Prometheus来提供,再利用prometheus-adpater聚合到apiserver,实现从metric-server组件获取CPU、内存同样的效果。

基于Prometheus自定义指标的HPA核心流程如下图:

c361fe82a97a53f5fc15290e8e797daa.png

prometheus-adapter组件部署

「1、安装prometheus-adapter组件:」

[root@k8s-01 ~]# helm repo add stable http://mirror.azure.cn/kubernetes/charts
"prometheus-community" has been added to your repositories
[root@k8s-01 ~]# helm repo update
Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "prometheus-community" chart repository
Update Complete. ⎈ Happy Helming!⎈ 
[root@k8s-01 ~]# helm repo list
NAME                    URL                                               
stable                  http://mirror.azure.cn/kubernetes/charts   [root@k8s-01 ~]# helm install prometheus-adapter stable/prometheus-adapter --namespace monitoring --set prometheus.url=http://prometheus,prometheus.port=9090
NAME: prometheus-adapter
LAST DEPLOYED: Tue Aug  1 23:44:08 2023
NAMESPACE: monitoring
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
prometheus-adapter has been deployed.
In a few minutes you should be able to list metrics using the following command(s):kubectl get --raw /apis/custom.metrics.k8s.io/v1beta1

curl http://192.168.31.160:32478/metrics

「2、查看组件安装是否成功:」

[root@k8s-01 ~]# kubectl get pod -n monitoring
NAME                                      READY   STATUS    RESTARTS   AGE
prometheus-adapter-76d8fb4549-6vzzg       1/1     Running   0          3m25s[root@k8s-01 ~]# kubectl get apiservices                                                 
NAME                                   SERVICE                          AVAILABLE   AGE
...
v1beta1.custom.metrics.k8s.io          monitoring/prometheus-adapter   True        2m28s[root@k8s-01 ~]# kubectl get --raw /apis/custom.metrics.k8s.io/v1beta1 |jq|more
{"kind": "APIResourceList","apiVersion": "v1","groupVersion": "custom.metrics.k8s.io/v1beta1","resources": [{"name": "namespaces/file_descriptors","singularName": "","namespaced": false,"kind": "MetricValueList","verbs": ["get"]},{"name": "namespaces/kube_ingress_annotations","singularName": "","namespaced": false,"kind": "MetricValueList","verbs": ["get"]},
...

查看prometheus-adapter组件的日志,注意不要出现类似http://prometheus:9090/api/v1/series?match%5B%5D=%7B__name__%3D~%22%5Econtainer_.%2A%22%2Ccontainer%21%3D%22POD%22%2Cnamespace%21%3D%22%22%2Cpod%21%3D%22%22%7D&start=1690905427.938  timeout 这样错误。

helm卸载操作如下:

[root@k8s-01 ~]# helm ls -n kube-system
NAME                    NAMESPACE       REVISION        UPDATED                                 STATUS          CHART                           APP VERSION
prometheus-adapter      kube-system     1               2023-08-01 23:44:08.027994527 +0800 CST deployed        prometheus-adapter-4.3.0        v0.11.0    
[root@k8s-01 ~]# helm uninstall prometheus-adapter -n kube-system
release "prometheus-adapter" uninstalled

部署golang应用

「1、初始化golang项目工程:」

[root@swarm-manager ~]# mkdir metrics
[root@swarm-manager ~]# cd metrics/
[root@swarm-manager metrics]# go mod init metrics

「2、编写metrics.go:」

package mainimport ("github.com/prometheus/client_golang/prometheus""github.com/prometheus/client_golang/prometheus/promhttp""net/http""strconv"
)func main() {metrics := prometheus.NewCounterVec(prometheus.CounterOpts{Name: "http_requests_total",Help: "Number of total http requests",},[]string{"status"},)prometheus.MustRegister(metrics)http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {path := r.URL.PathstatusCode := 200switch path {case "/metrics":promhttp.Handler().ServeHTTP(w, r)default:w.WriteHeader(statusCode)w.Write([]byte("Hello World!"))}metrics.WithLabelValues(strconv.Itoa(statusCode)).Inc()})http.ListenAndServe(":3000", nil)
}

该go项目主要通过/metrics端点暴露http_requests_total指标。

「3、本地编译打包:」

[root@swarm-manager metrics]# go mod tidy
[root@swarm-manager metrics]# go build -o metrics metrics.go

「4、创建镜像,并推送docker hub上:」

编写Dockerfile:

FROM golang:latest
MAINTAINER simon "30743905@qq.com"
RUN mkdir -p /app
WORKDIR /app
COPY ./metrics /app
EXPOSE 3000RUN chmod +x ./metrics
ENTRYPOINT ["./metrics"]

构建镜像:

docker build -t metrics .

「5、k8s部署:」

# sample-httpserver-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:labels:app: sample-httpservername: sample-httpservernamespace: default
spec:replicas: 1selector:matchLabels:app: sample-httpserverstrategy: {}template:metadata:annotations:prometheus.io/scrape: "true"prometheus.io/path: /metricsprometheus.io/port: "3000"labels:app: sample-httpserverspec:containers:- image: addozhang/httpserver-n-metrics:latestname: httpserver-n-metricsports:- containerPort: 3000resources:requests:memory: '300Mi'
---
apiVersion: v1
kind: Service
metadata:name: sample-httpserverlabels:app: sample-httpserver
spec:ports:- name: webport: 3000targetPort: 3000selector:app: sample-httpserver

「6、接口获取指标正常:」

[root@k8s-01 demo01]# kubectl get svc -n demo01     
NAME                TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)    AGE
nginx-service       ClusterIP   None            <none>        80/TCP     249d
sample-httpserver   ClusterIP   10.96.153.13    <none>        3000/TCP   32s
tomcat-service      ClusterIP   None            <none>        8080/TCP   249d
web                 ClusterIP   10.96.237.204   <none>        80/TCP     47h
[root@k8s-01 demo01]# curl 10.96.153.13:3000/metrics
# HELP go_gc_duration_seconds A summary of the pause duration of garbage collection cycles.
# TYPE go_gc_duration_seconds summary
go_gc_duration_seconds{quantile="0"} 3.5147e-05
go_gc_duration_seconds{quantile="0.25"} 3.8423e-05
go_gc_duration_seconds{quantile="0.5"} 4.1267e-05
go_gc_duration_seconds{quantile="0.75"} 5.0566e-05
go_gc_duration_seconds{quantile="1"} 9.0761e-05
go_gc_duration_seconds_sum 0.001240037
go_gc_duration_seconds_count 25
......

「7、prometheus配置抓取job:」

- job_name: 'app'kubernetes_sd_configs:- role: podrelabel_configs:- action: keepsource_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]regex: true- source_labels: [__meta_kubernetes_namespace]target_label: namespace- source_labels: [__meta_kubernetes_pod_name]target_label: pod

「8、指标抓取验证:」

在prometheus target可以查看到部署的应用指标接入成功:

91f52114846051b040c282a73c2eef89.png

使用PromQL查询:sum(rate(http_requests_total[30s])) by (pod)

9332f9b415918a2e72d3379d04458dcd.png

hpa资源创建

「1、创建hpa:」

# vi app-hpa-v2.yml
apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:name: metrics-app-hpa namespace: demo01
spec:scaleTargetRef:apiVersion: apps/v1kind: Deploymentname: sample-httpserverminReplicas: 1maxReplicas: 3metrics:- type: Podspods:metric:name: http_requests_qpstarget:type: AverageValueaverageValue: 2000m   # 2000m 即2个/秒

「2、prometheus-adapter组件配置自定义指标的计算规则,告诉prometheus-adapter如何从prometheus获取指标并计算出我们需要的指标:kubectl edit cm prometheus-adapter -n monitoring

02a429fd2f3a377398f4569c11f05584.png

prometheus-adapter不能动态加载配置,需要kubectl delete pod prometheus-adapter-xx,让Pod重启加载最新配置。

「3、可以访问api-server获取到prometheus-adapter计算生成的新指标:」

[root@k8s-01 ~]# kubectl get --raw '/apis/custom.metrics.k8s.io/v1beta1/namespaces/demo01/pods/*/http_requests_qps' | jq         
{"kind": "MetricValueList","apiVersion": "custom.metrics.k8s.io/v1beta1","metadata": {"selfLink": "/apis/custom.metrics.k8s.io/v1beta1/namespaces/demo01/pods/%2A/http_requests_qps"},"items": [{"describedObject": {"kind": "Pod","namespace": "demo01","name": "sample-httpserver-695f994dbd-s2s2g","apiVersion": "/v1"},"metricName": "http_requests_qps","timestamp": "2023-08-02T15:32:56Z","value": "66m","selector": null}]
}

「注意:这里的 value: 66m,值的后缀“m” 标识 milli-requests per seconds,所以这里的 66m 的意思是 0.06/s 每秒0.06个请求。」

「4、prometheus-adapter有了指标数据,就可以创建hpa基于该指标:kubectl apply -f app-hpa-v2.yml

# vi app-hpa-v2.yml
apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:name: metrics-app-hpanamespace: demo01
spec:scaleTargetRef:apiVersion: apps/v1kind: Deploymentname: sample-httpserverminReplicas: 1maxReplicas: 3metrics:- type: Podspods:metric:name: http_requests_qpstarget:type: AverageValueaverageValue: 2000m   # 2000m 即2个/秒

「5、查看hpa从prometheus-adapter组件获取指标正常:」

b00a55bd5ab1c9a174b890851e13289b.png

当前Pod副本数为1:

e41825a97e333b6c93f74d934a5ac76a.png

「6、接口压测:」

[root@k8s-01 ~]# kubectl get svc -n demo01
NAME                TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)    AGE
nginx-service       ClusterIP   None            <none>        80/TCP     249d
sample-httpserver   ClusterIP   10.96.153.13    <none>        3000/TCP   8m11s
[root@k8s-01 ~]# ab -n 100000 -c 30  http://10.96.153.13:3000/metrics
This is ApacheBench, Version 2.3 <$Revision: 1430300 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/Benchmarking 10.96.153.13 (be patient)
Completed 10000 requests
Completed 20000 requests

「7、弹性伸缩验证:」

查看hpa状态,targets一栏显示当前指标到达10900m左右,斜杠后面2表示到达2就要弹性伸缩,10900m/1000=10左右,明显超过2,则replicas一栏显示当前进行扩容到最大副本数3:

c0d1ee3e13dd8020d14faecff26015a7.png

查看hpa描述信息,可以看到有条Event清晰描述出有图http_requests_qps指标超过target设置的2,副本数设置为3:

acc6137b7849f980d0d50c4407362bc8.png

再来看pod信息,发现副本数确实扩容到3个:

94fc76122bee05b7b6005f7a8e5ffd20.png

「8、弹性缩容验证:」

停止接口压测后,hpa指标下降,200m明显小于2,当大概平稳5分钟后,hpa开始进行缩容,将副本数从3降到1:

00748c1582b01ceb6dda671dfa734330.png

查看hpa描述信息,同样印证了hpa发生缩容:

6bc8dee56ef174e56aeadb62d7ebfda7.png

再来确认下Pod已经变成1个了:

a2937dd117994b64784a29cc5544b49a.png

相关文章:

【云原生•监控】基于Prometheus实现自定义指标弹性伸缩(HPA)

【云原生•监控】基于Prometheus实现自定义指标弹性伸缩(HPA) 什么是弹性伸缩 「Autoscaling即弹性伸缩&#xff0c;是Kubernetes中的一种非常核心的功能&#xff0c;它可以根据给定的指标&#xff08;例如 CPU 或内存&#xff09;自动缩放Pod副本&#xff0c;从而可以更好地管…...

Windows、 Linux 等操作系统的基本概念及其常见操作

Windows 和 Linux 是两种常见的操作系统&#xff0c;它们在计算机领域中广泛使用。下面我将为您介绍它们的基本概念以及一些常见的操作。 **Windows 操作系统&#xff1a;** 1. **基本概念&#xff1a;** Windows 是由微软公司开发的操作系统系列&#xff0c;旨在为个人计算机…...

【RabbitMQ】golang客户端教程5——使用topic交换器

topic交换器&#xff08;主题交换器&#xff09; 发送到topic交换器的消息不能具有随意的routing_key——它必须是单词列表&#xff0c;以点分隔。这些词可以是任何东西&#xff0c;但通常它们指定与消息相关的某些功能。一些有效的routing_key示例&#xff1a;“stock.usd.ny…...

SpringBoot对接OpenAI

SpringBoot对接OpenAI 随着人工智能技术的飞速发展&#xff0c;越来越多的开发者希望将智能功能集成到自己的应用中&#xff0c;以提升用户体验和应用的功能。OpenAI作为一家领先的人工智能公司&#xff0c;提供了许多先进的自然语言处理和语言生成模型&#xff0c;其中包括深…...

(C++)继承

目录 1.继承的概念及定义 1.1继承的概念 1.2继承定义 1.2.1定义格式 1.2.2继承方式和访问限定符 1.2.3继承基类成员访问方式的变化 2.基类和派生类对象赋值转换 3.继承中的作用域 4.派生类的默认成员函数 5.继承与友元 6.继承与静态成员 7.复杂的菱形继承及菱形虚拟…...

图像处理技巧形态学滤波之膨胀操作

1. 引言 欢迎回来&#xff0c;我的图像处理爱好者们&#xff01;今天&#xff0c;让我们继续研究图像处理领域中的形态学计算。在本篇中&#xff0c;我们将重点介绍腐蚀操作的反向效果膨胀操作。 闲话少说&#xff0c;我们直接开始吧&#xff01; 2. 膨胀操作原理 膨胀操作…...

机器学习基础之《特征工程(4)—特征降维》

一、什么是特征降维 降维是指在某些限定条件下&#xff0c;降低随机变量&#xff08;特征&#xff09;个数&#xff0c;得到一组“不相关”主变量的过程 1、降维 降低维度 ndarry 维数&#xff1a;嵌套的层数 0维&#xff1a;标量&#xff0c;具体的数0 1 2 3... …...

学生管理系统(Python版本)

class Student:def __init__(self, id, name, age):self.id idself.name nameself.age ageclass StudentManagementSystem:def __init__(self):self.students []def add_student(self, student):self.students.append(student)print("学生信息添加成功&#xff01;&qu…...

Linux下快速创建大文件的4种方法总结

1、使用 dd 命令创建大文件 dd 命令用于复制和转换文件&#xff0c;它最常见的用途是创建实时 Linux USB。dd 命令是实际写入硬盘&#xff0c;文件产生的速度取决于硬盘的读写速度&#xff0c;根据文件的大小&#xff0c;该命令将需要一些时间才能完成。 假设我们要创建一个名…...

用 Rufus 制作 Ubuntu 系统启动盘时,选择分区类型为MBR还是GPT?

当使用 Rufus 制作 Ubuntu 系统启动盘时&#xff0c;您可以根据您的需求选择分区类型&#xff0c;MBR&#xff08;Master Boot Record&#xff09;还是 GPT&#xff08;GUID Partition Table&#xff09;。 MBR 是传统的分区表格式&#xff0c;适用于大多数旧版本的操作系统和旧…...

Nodejs+vue+elementui汽车租赁管理系统_1ma2x

语言 node.js 框架&#xff1a;Express 前端:Vue.js 数据库&#xff1a;mysql 数据库工具&#xff1a;Navicat 开发软件&#xff1a;VScode 前端nodejsvueelementui, 课题主要分为三大模块&#xff1a;即管理员模块、用户模块和普通管理员模块&#xff0c;主要功能包括&#…...

Prometheus入门

Prometheus(普罗米修斯) 是一种 新型监控告警工具,Kubernetes 的流行带动了 Prometheus 的应用。 全文参考自 prometheus 学习笔记(1)-mac 单机版环境搭建[1] Mac 上安装 Prometheus brew install prometheus 安装路径在 /usr/local/Cellar/prometheus/2.20.1, 配置文件在 /usr…...

RISC-V云测平台:Compiling The Fedora Linux Kernel Natively on RISC-V

注释&#xff1a;编译Fedora&#xff0c;HS-2 64核RISC-V服务器比Ryzen5700x快两倍&#xff01; --- 以下是blog 正文 --- # Compiling The Fedora Linux Kernel Natively on RISC-V ## Fedora RISC-V Support There is ongoing work to Fedora to support RISC-V hardwar…...

Vim学习(三)—— Git Repo Gerrit

Git、Gerrit、Repo三者的概念及使用 三者各自作用&#xff1a; git&#xff1a;版本管理库&#xff0c;在git库中没有中心服务器的概念&#xff0c;真正的分布式。 repo&#xff1a;repo就是多个git库的管理工具。如果是多个git库同时管理&#xff0c;可以使用repo。当然使用…...

论坛项目之用户部分

注册接口 实现思路 1.特殊字段检查&#xff08;比如性别没有给出需要给出默认值&#xff09; 2.对比检查两次输入的密码是否一致&#xff0c;不一致报错 3.利用UUID生成随机‘盐’值&#xff0c;并使用密码进行MD5加密后与‘盐’进行拼接&#xff0c;生成加密后的密码 4.创建U…...

golang内存对齐

为什么要内存对齐&#xff1f; CPU访问内存时&#xff0c;以CPU的位数为单位进行访问。 如果访问未对齐的内存&#xff0c;处理器需要做两次内存访问&#xff0c;对齐的内存的访问可能仅需要一次&#xff0c;利用内存对齐后提升读取速度。 golang结构体内存对齐规则 在代码编译…...

【CheatSheet】Python、R、Julia数据科学编程极简入门

《Python、R、Julia数据科学编程极简入门》PDF版&#xff0c;是我和小伙伴一起整理的备忘清单&#xff0c;帮助大家10分钟快速入门数据科学编程。 另外&#xff0c;最近 TIOBE 公布了 2023 年 8 月的编程语言排行榜。 Julia 在本月榜单中实现历史性突破&#xff0c;成功跻身 …...

【golang】怎样判断一个变量的类型?

怎样判断一个变量的类型&#xff1f; package mainimport "fmt"var container []string{"zero", "one", "two"} func main() {container : map[int]string{0: "zero", 1: "one", 2: "two"}fmt.Printf…...

怎么学习AJAX相关技术? - 易智编译EaseEditing

学习AJAX&#xff08;Asynchronous JavaScript and XML&#xff09;相关技术可以让你实现网页的异步数据交互&#xff0c;提升用户体验。以下是一些学习AJAX技术的步骤和资源&#xff1a; HTML、CSS和JavaScript基础&#xff1a; 首先&#xff0c;确保你已经掌握了基本的HTML…...

JDK、JRE、JVM:揭秘Java的关键三者关系

文章目录 JDK&#xff1a;Java开发工具包JRE&#xff1a;Java运行环境JVM&#xff1a;Java虚拟机关系概述 案例示例&#xff1a;Hello World结语 在Java世界中&#xff0c;你可能经常听到JDK、JRE和JVM这几个概念&#xff0c;它们分别代表了Java开发工具包、Java运行环境和Java…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇&#xff0c;在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下&#xff1a; 【Note】&#xff1a;如果你已经完成安装等操作&#xff0c;可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作&#xff0c;重…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个&#xff1f;3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制&#xff08;过半机制&#xff0…...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币&#xff0c;另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额&#xff0c;返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

基于SpringBoot在线拍卖系统的设计和实现

摘 要 随着社会的发展&#xff0c;社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统&#xff0c;主要的模块包括管理员&#xff1b;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...

MFE(微前端) Module Federation:Webpack.config.js文件中每个属性的含义解释

以Module Federation 插件详为例&#xff0c;Webpack.config.js它可能的配置和含义如下&#xff1a; 前言 Module Federation 的Webpack.config.js核心配置包括&#xff1a; name filename&#xff08;定义应用标识&#xff09; remotes&#xff08;引用远程模块&#xff0…...