当前位置: 首页 > news >正文

P2P 网络,PING程序。

没有废话,直接上版本号和代码,以及讲解。

crate版本号
libp2p0.52.1
tokio1.30.0

依赖配置:

[dependencies]
tokio = { version="1.30.0", features=["full"] }
libp2p = { version="0.52.1", features=["tokio","dns", "macros", "noise", "ping", "tcp", "websocket", "yamux"] }

P2P

Peer-to-Peer是一种网络技术。一种点对点的通讯技术。没有client-service概念。

节点

在P2P网络中,节点标识被成为PeerId。

代码

use std::error::

相关文章:

P2P 网络,PING程序。

没有废话,直接上版本号和代码,以及讲解。 crate版本号libp2p0.52.1tokio1.30.0依赖配置: [dependencies] tokio = { version="1.30.0", features=["full"] } libp2p = { version="0.52.1", features=["tokio","dns", &q…...

OPENCV C++(十二)模板匹配

正常模板匹配函数 matchTemplate(img, templatee, resultMat, 0);//模板匹配 这里0代表的是方法,一般默认为0就ok img是输入图像 templatee是模板 resultmat是输出 1、cv::TM_SQDIFF:该方法使用平方差进行匹配,因此最佳的匹配结果在结果为…...

【配置环境】Linux下安装MySQL

目录 一,环境 二,安装步骤 1.使用包管理器安装MySQL 2.配置MySQL的安全选项 3.设置root用户使用密码进行身份验证(可选) 三,拓展知识 1.如何修改MySQL的密码策略? 一,环境 VMware Workst…...

【100天精通python】Day30:使用python操作数据库_数据库基础入门

专栏导读 专栏订阅地址:https://blog.csdn.net/qq_35831906/category_12375510.html 1 数据库基础知识介绍 1.1 什么是数据库? 数据库是一个结构化存储和组织数据的集合,它可以被有效地访问、管理和更新。数据库的目的是为了提供一种可靠的…...

android 如何分析应用的内存(十八)终章——使用Perfetto查看内存与调用栈之间的泄露

android 如何分析应用的内存(十八) 在前面两篇文章中,先是介绍了如何用AS查看Android的堆内存,然后介绍了使用MAT查看 Android的堆内存。AS能够满足基本的内存分析需求,但是无法进行多个堆的综合比较,因此…...

arcpy实现kml批量转出为shp 包括shp合并

参考文章 arcpy实现 kml批量转出为shp_kml批量合并转shp_A873054267的博客-CSDN博客 参考帮助是arcgis里边自带的KMLToLayer_conversion函数 应用场景: 两步路产生的多个轨迹文件KML,批量转换成arcgis 的gdb数据库 最后合并成一个shp 第一步&#…...

高等数学:泰勒公式

注:第三条 e x e^x ex的展开式,在 1 1 1和 1 2 x 2 \frac{1}{2}x^2 21​x2之间添上一个 x x x。 1 1 − x ∑ n 0 ∞ x n 1 x x 2 x 3 ο ( x 3 ) , x ∈ ( − 1 , 1 ) . \begin{aligned}\frac{1}{1-x}\sum_{n0}^\infty x^n1xx^2x^3\omicron(x^…...

JZ32 从上往下打印二叉树(Java)

题目地址:从上往下打印二叉树_牛客题霸_牛客网 题目回顾: 不分行从上往下打印出二叉树的每个节点,同层节点从左至右打印。例如输入{8,6,10,#,#,2,1},如以下图中的示例二叉树,则依次打印8,6,10,2,1(空节点不打印&…...

hackNos靶机

靶机训练1 - hackNos: Os-hackNos 靶机平台 Vulnhub 是一个提供各种漏洞环境的靶场平台,供安全爱好者学习使用,大部分环境是做好的虚拟机镜像文件,镜像预先设计了多种漏洞,需要使用VMware或者VirtualBox运行。每个镜像会有破解的目…...

取地址及 const取地址操作符重载

取地址及 const取地址操作符重载 #include <iostream> using namespace std;class A { public:A(int year, int month, int day){_year year;_month month;_day day;}//它们是默认成员函数&#xff0c;我们不写编译器会自动生成&#xff0c;自动生成就够用了&#xff…...

【Linux初阶】进程间通信介绍 管道

&#x1f31f;hello&#xff0c;各位读者大大们你们好呀&#x1f31f; &#x1f36d;&#x1f36d;系列专栏&#xff1a;【Linux初阶】 ✒️✒️本篇内容&#xff1a;进程间通信介绍&#xff0c;管道概述&#xff0c;匿名管道应用&#xff0c;命名管道应用 &#x1f6a2;&#…...

App 在macOS Catalina下提示已损坏无法打开解决办法:

App 在macOS Catalina下提示已损坏无法打开解决办法&#xff1a; 打开终端&#xff1b; 输入以下命令&#xff0c;回车&#xff1b; sudo xattr -d com.apple.quarantine /Applications/xxxx.app注意&#xff1a;/Applications/xxxx.app 换成你的App路径&#xff08;推荐直接…...

ad+硬件每日学习十个知识点(26)23.8.6 (DCDC的降压电路、升压电路、降压-升压电路,同步整流,选型考虑同步、隔离)

文章目录 1.DCDC的降压原理2.DCDC的升压原理3.DCDC的升压和降压原理4.什么是肖特基二极管造成的死区电压&#xff1f;5.MOS管有死区电压么&#xff1f;6.DCDC的同步整流&#xff08;用MOS管取代整流二极管&#xff0c;避免死区电压的影响&#xff09;7.DCDC选型——同步与非同步…...

Elasticsearch3节点集群配置账号密码安全验证

Elasticsearch3节点集群配置账号密码安全验证 ES配置文件 rootnode1:~# grep -Ev "^#|^$" /etc/elasticsearch/elasticsearch.yml cluster.name: es-pre node.name: node1 node.master: true node.data: true path.data: /data/elk/es/data path.logs: /data/elk/…...

ffmepg滤镜

视频按顺时针方向旋转90度 ffplay -vf transpose1 -i juren-30s.mp4 ffplay -f lavfi -i testsrc -vf transpose1 -f lavfi -i testsrc这个滤镜是ffmpeg给用户的一个测试使用的视频 视频水平翻转(左右翻转) -vf hflip 实现慢速播放&#xff0c;声音速度是原始速度的50% ffpla…...

Linux 基础(六)常用命令 - find locate which whereis gzip gunzip tar

find & locate & which & whereis & gzip & gunzip & tar findlocatewhichwhereisgzipgunzipzip/unziptar find 在指定目录下查找文件或目录 find --help Usage: find [-H] [-L] [-P] [-Olevel] [-D help|tree|search|stat|rates|opt|exec] [path...…...

【Ajax】回调地狱解决方法

回调地狱&#xff08;Callback Hell&#xff09;是指在异步编程中&#xff0c;特别是在嵌套的回调函数中&#xff0c;代码变得深度嵌套、难以阅读和维护的现象。这通常发生在处理多个异步操作时&#xff0c;每个操作都依赖于前一个操作的结果。回调地狱使代码变得难以理解、扩展…...

解决Vue根组件设置transition失效的问题

解决Vue根组件设置transition失效的问题 1.代码 <div id"app"><!-- :name"$route.meta.transitionName" --><transition :name"animation" mode"out-in"><router-view /></transition></div>&…...

【剑指 Offer 40】最小的k个数

题目&#xff1a; 输入整数数组 arr &#xff0c;找出其中最小的 k 个数。例如&#xff0c;输入 4、5、1、6、2、7、3、8 这 8 个数字&#xff0c;则最小的 4 个数字是 1、2、3、4。 示例&#xff1a; 输入&#xff1a;arr [3,2,1], k 2 输出&#xff1a;[1,2] 或者 [2,1] …...

vue3+vite在main.ts文件中引入./App.vue报错(./App.vue不是模块)

问题 如下图&#xff1a; 方法一 下载TypeScript Vue Plugin (Volar)插件就不报红了&#xff0c;看它的描述应该就是ts文件可以识别vue文件。 方法二 在src文件夹下添加env.d.ts文件&#xff0c;添加以下代码&#xff1a; declare module *.vue {import type { DefineC…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

push [特殊字符] present

push &#x1f19a; present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中&#xff0c;push 和 present 是两种不同的视图控制器切换方式&#xff0c;它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...

scikit-learn机器学习

# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧

上周三&#xff0c;HubSpot宣布已构建与ChatGPT的深度集成&#xff0c;这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋&#xff0c;但同时也存在一些关于数据安全的担忧。 许多网络声音声称&#xff0c;这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...

嵌入式常见 CPU 架构

架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集&#xff0c;单周期执行&#xff1b;低功耗、CIP 独立外设&#xff1b;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel&#xff08;原始…...

LangChain 中的文档加载器(Loader)与文本切分器(Splitter)详解《二》

&#x1f9e0; LangChain 中 TextSplitter 的使用详解&#xff1a;从基础到进阶&#xff08;附代码&#xff09; 一、前言 在处理大规模文本数据时&#xff0c;特别是在构建知识库或进行大模型训练与推理时&#xff0c;文本切分&#xff08;Text Splitting&#xff09; 是一个…...

数据分析六部曲?

引言 上一章我们说到了数据分析六部曲&#xff0c;何谓六部曲呢&#xff1f; 其实啊&#xff0c;数据分析没那么难&#xff0c;只要掌握了下面这六个步骤&#xff0c;也就是数据分析六部曲&#xff0c;就算你是个啥都不懂的小白&#xff0c;也能慢慢上手做数据分析啦。 第一…...

二叉树-144.二叉树的前序遍历-力扣(LeetCode)

一、题目解析 对于递归方法的前序遍历十分简单&#xff0c;但对于一位合格的程序猿而言&#xff0c;需要掌握将递归转化为非递归的能力&#xff0c;毕竟递归调用的时候会调用大量的栈帧&#xff0c;存在栈溢出风险。 二、算法原理 递归调用本质是系统建立栈帧&#xff0c;而非…...