MySQL 窗口函数是什么,有这么好用
先看这段像天书一样的 SQL ,看着就头疼。
SELECTs1.name,s1.subject,s1.score,sub.avg_score AS average_score_per_subject,(SELECT COUNT(DISTINCT s2.score) + 1 FROM scores s2 WHERE s2.score > s1.score) AS score_rank
FROM scores s1
JOIN (SELECT subject, AVG(score) AS avg_scoreFROM scoresGROUP BY subject
) sub ON s1.subject = sub.subject
ORDER BY s1.score DESC;
这段SQL是干什么用的呢,就是为了计算一个成绩排名,简直大动干戈啊。
那有没有简化的方法呢?有的。
简化后的版本就是利用今天说的窗口函数。
SELECTname,subject,score,AVG(score) OVER (PARTITION BY subject) AS average_score_per_subject,RANK() OVER (ORDER BY score DESC) AS score_rank
FROM scores
ORDER BY score DESC;
是不是看上去就简洁清晰多了。
下面我们看看是什么样的功能。
首先创建一个表,包含姓名、学科、分数三个字段,用于后面功能的演示。
CREATE TABLE `scores` (`name` varchar(20) COLLATE utf8_bin NOT NULL,`subject` varchar(20) COLLATE utf8_bin NOT NULL,`score` int(3) NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin;
然后向表中插入一些随机记录。
INSERT INTO scores (name, subject, score) VALUES ('Student1', '化学', 75);
INSERT INTO scores (name, subject, score) VALUES ('Student2', '生物', 92);
INSERT INTO scores (name, subject, score) VALUES ('Student3', '物理', 87);
INSERT INTO scores (name, subject, score) VALUES ('Student4', '数学', 68);
INSERT INTO scores (name, subject, score) VALUES ('Student5', '英语', 91);
INSERT INTO scores (name, subject, score) VALUES ('Student6', '化学', 58);
INSERT INTO scores (name, subject, score) VALUES ('Student7', '物理', 79);
INSERT INTO scores (name, subject, score) VALUES ('Student8', '数学', 90);
INSERT INTO scores (name, subject, score) VALUES ('Student9', '数学', 45);
##什么是窗口函数
在 MySQL 8.x 版本中,MySQL 提供了窗口函数,窗口函数是一种在查询结果的特定窗口范围内进行计算的函数。
很早以前用 Oracle 和 MS SQL 的时候会用到里面的窗口函数,但是用 MySQL 后才发现,MySQL 竟然没有窗口函数,以至于一些负责的统计查询都要用各种子查询、join,层层嵌套,看上去很简单的需求,结果搞得 SQL 语句写的是龙飞凤舞,别人一看跟天书似的。就一个字儿,懵。
窗口函数主要的应用场景是统计和计算,例如对查询结果进行分组、排序和计算聚合,通过各个函数的组合,可以实现各种复杂的逻辑,而且比起 MySQL 8.0之前用子查询、join 的方式,性能上要好得多。
OVER()
OVER() 是用于定义窗口函数的子句,它必须结合其他的函数才有意义,比如求和、求平均数。而它只用于指定要计算的数据范围和排序方式。
function_name(...) OVER ([PARTITION BY expr_list] [ORDER BY expr_list] [range]
)
PARTITION BY
用于指定分区字段,对不同分区进行分析计算,分区其实就列,可以指定一个列,也可以指定多个列。
ORDER BY
用于对分区内记录进行排序,排序后可以与「范围和滚动窗口」一起使用。
范围和滚动窗口
用于指定分析函数的窗口,包括范围和滚动窗口。
范围窗口(Range window)
指定窗口的起止行号,使用UNBOUNDED PRECEDING表示起点,UNBOUNDED FOLLOWING表示终点。
例如:
SUM(salary) OVER (ORDER BY id RANGE BETWEEN 5 PRECEDING AND 5 FOLLOWING)
这会计算当前行及之前5行和之后5行的salary总和。
滚动窗口(Row window)
使用了基于当前行的滚动窗口
例如:
SUM(salary) OVER (ORDER BY id ROWS BETWEEN 2 PRECEDING AND 2 FOLLOWING)
这会计算当前行及之前2行和之后2行的salary总和。
OVER()可搭配的函数:
聚合函数
MAX(),MIN(),COUNT(),SUM()等,用于生成每个分区的聚合结果。
排序相关
ROW_NUMBER(),RANK(),DENSE_RANK()等,用于生成每个分区的行号或排名。
窗口函数
LAG(),LEAD(),FIRST_VALUE(),LAST_VALUE()等,用于基于窗口框生成结果。
搭配聚合函数
1、按subject
列进行分区,并求出某学科的最大最小值
获取分数和此学科最高分
SELECT subject,score, MAX(score) OVER (PARTITION BY subject) as `此学科最高分` FROM scores;
得出的结果是:
subject | score | 此学科最高分 |
---|---|---|
化学 | 75 | 75 |
化学 | 58 | 75 |
数学 | 68 | 90 |
数学 | 90 | 90 |
数学 | 45 | 90 |
物理 | 87 | 87 |
物理 | 79 | 87 |
生物 | 92 | 92 |
英语 | 91 | 91 |
2、获取学科的报名人数
SELECT subject,score, count(name) OVER (PARTITION BY subject) as `报名此学科人数` FROM scores;
得到的结果为:
subject | score | 报名此学科人数 |
---|---|---|
化学 | 75 | 2 |
化学 | 58 | 2 |
数学 | 68 | 3 |
数学 | 90 | 3 |
数学 | 45 | 3 |
物理 | 87 | 2 |
物理 | 79 | 2 |
生物 | 92 | 1 |
英语 | 91 | 1 |
3、求学科的总分
SELECT subject, SUM(score) OVER (PARTITION BY subject) as `此学科总分` FROM scores;
得到的结果:
subject | 此学科总分 |
---|---|
化学 | 133 |
化学 | 133 |
数学 | 203 |
数学 | 203 |
数学 | 203 |
物理 | 166 |
物理 | 166 |
生物 | 92 |
英语 | 91 |
4、使用 order by 求累加分数
SELECT name,subject,score, SUM(score) OVER (order BY score) as `累加分数` FROM scores;
得到的结果:
name | subject | score | 累加分数 |
---|---|---|---|
Student9 | 数学 | 45 | 45 |
Student6 | 化学 | 58 | 103 |
Student4 | 数学 | 68 | 171 |
我们看这是怎么算出来的,OVER 函数里面是 order by 。
首先根据分数排序(默认升序),得到第一行分数是45,所以累加分数就是它自己,也就是45。
然后排序得到第二行 58,然后将第一行和第二行相加,这样得到累加分数就是45+58=103。
同理,第三行就是前三行的总和,也就是45+58+68=171。
以此类推,第 N 行就是1~N的累加和。
5、使用 order by + 范围
前面因为没有限定范围,所以就是前 N 行的累加,还可以限定范围。
SELECT name,subject,score, SUM(score) OVER (order BY `score` ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) as `累加分数` FROM scores;
这里的累加分数是指当前行+前一行+后一行的和。
获取的结果为:
name | subject | score | 累加分数 |
---|---|---|---|
Student9 | 数学 | 45 | 103 |
Student6 | 化学 | 58 | 171 |
Student4 | 数学 | 68 | 201 |
Student1 | 化学 | 75 | 222 |
Student7 | 物理 | 79 | 241 |
Student3 | 物理 | 87 | 256 |
Student8 | 数学 | 90 | 268 |
Student5 | 英语 | 91 | 273 |
第一行 103,是当前行 45+后一行(58)的和,等于103,因为没有前一行。
第二行171,是当前行58+前一行(45)+后一行(68)的和,等于171。
以此类型,后面的累加分数都是这样算出来的。
搭配排序相关函数
ROW_NUMBER()
ROW_NUMBER() 函数用于为结果集中的每一行分配一个唯一的排序。
如下,对成绩进行排名,分数高的排在前面,如果有两个人分数相同,那仍然是一个第一,另一个第二。
SELECT name,subject,score, ROW_NUMBER() OVER (order BY `score` desc) as `排名` FROM scores;
查询结果为:
name | subject | score | 排名 |
---|---|---|---|
Student2 | 生物 | 92 | 1 |
Student5 | 英语 | 91 | 2 |
Student8 | 数学 | 90 | 3 |
Student3 | 物理 | 87 | 4 |
Student7 | 物理 | 79 | 5 |
如果不用 ROW_NUMBER()
,比如在 MySQL 5.7的版本中,就会像下面这样:
SELECT s1.name, s1.subject, s1.score, COUNT(s2.score) + 1 AS `排名`
FROM scores s1
LEFT JOIN scores s2 ON s1.score < s2.score
GROUP BY s1.name, s1.subject, s1.score
ORDER BY s1.score DESC;
是不是比使用 ROW_NUMBER()
复杂的多。
RANK()
RANK() 函数用于为结果集中的每一行分配一个排名值,它也是排名的,但是它和 ROW_NUMBER()
有,RANK()
函数在遇到相同值的行会将排名设置为相同的,就像是并列排名。
就像是奥运比赛,如果有两个人都是相同的高分,那可能就是并列金牌,但是这时候就没有银牌了,仅次于这两个人的排名就会变成铜牌。
SELECT name,subject,score, RANK() OVER (order BY `score` desc) as `排名` FROM scores;
查询结果为:
name | subject | score | 排名 |
---|---|---|---|
Student1 | 化学 | 92 | 1 |
Student2 | 生物 | 92 | 1 |
Student5 | 英语 | 91 | 3 |
Student8 | 数学 | 90 | 4 |
Student3 | 物理 | 87 | 5 |
DENSE_RANK()
DENSE_RANK() 也是用作排名的,和 RANK()
函数的差别就是遇到相同值的时候,不会跳过排名,比如两个人是并列金牌,排名都是1,那仅次于这两个人的排名就是2,而不像 RANK()
那样是3。
SELECT name,subject,score, DENSE_RANK() OVER (order BY `score` desc) as `排名` FROM scores;
查询结果为:
name | subject | score | 排名 |
---|---|---|---|
Student1 | 化学 | 92 | 1 |
Student2 | 生物 | 92 | 1 |
Student5 | 英语 | 91 | 2 |
Student8 | 数学 | 90 | 3 |
配合其他窗口函数
NTILE()
NTILE() 函数用于将结果集划分为指定数量的组,并为每个组分配一个编号。例如,将分数倒序排序并分成4个组,相当于有了4个梯队。
SELECT name,subject,score, NTILE(4) OVER (order BY `score` desc) as `组` FROM scores;
查询结果为:
name | subject | score | 组 |
---|---|---|---|
Student1 | 化学 | 92 | 1 |
Student2 | 生物 | 92 | 1 |
Student5 | 英语 | 91 | 1 |
Student8 | 数学 | 90 | 2 |
Student3 | 物理 | 87 | 2 |
Student7 | 物理 | 79 | 3 |
Student4 | 数学 | 68 | 3 |
Student6 | 化学 | 58 | 4 |
Student9 | 数学 | 45 | 4 |
LAG()
LAG() 函数用于在查询结果中访问当前行之前的行的数据。它允许您检索前一行的值,并将其与当前行的值进行比较或计算差异。LAG()
函数对于处理时间序列数据或比较相邻行的值非常有用。
LAG()
函数完整的表达式为 LAG(column, offset, default_value)
,包含三个参数:
column:就是列名,获取哪个列的值就是哪个列名,很好理解。
offset: 就是向前的偏移量,取当前行的前一行就是1,前前两行就是2。
default_value:是可选值,如果向前偏移的行不存在,就取这个默认值。
例如比较相邻两个排名的分数差,可以这样写:
SELECTname,subject,score,ABS(score - LAG(score, 1,score) OVER (ORDER BY score DESC)) AS `分值差`
FROMscores;
得到的结果为:
name | subject | score | 分值差 |
---|---|---|---|
Student1 | 化学 | 92 | 0 |
Student2 | 生物 | 92 | 0 |
Student5 | 英语 | 91 | 1 |
Student8 | 数学 | 90 | 1 |
Student3 | 物理 | 87 | 3 |
Student7 | 物理 | 79 | 8 |
Student4 | 数学 | 68 | 11 |
LEAD()
LEAD()
函数和 LAG()
的功能一致,只不过它的偏移量是向后偏移,也就是取当前行的后 N 行。
所以前面的比较相邻两行差值的逻辑,也可以向后比较。
SELECTname,subject,score,score - LEAD(score, 1,score) OVER (ORDER BY score DESC) AS `分值差`
FROMscores;
得到的结果:
name | subject | score | 分值差 |
---|---|---|---|
Student1 | 化学 | 92 | 0 |
Student2 | 生物 | 92 | 1 |
Student5 | 英语 | 91 | 1 |
Student8 | 数学 | 90 | 3 |
Student3 | 物理 | 87 | 8 |
Student7 | 物理 | 79 | 11 |
Student4 | 数学 | 68 | 10 |
相关文章:
MySQL 窗口函数是什么,有这么好用
先看这段像天书一样的 SQL ,看着就头疼。 SELECTs1.name,s1.subject,s1.score,sub.avg_score AS average_score_per_subject,(SELECT COUNT(DISTINCT s2.score) 1 FROM scores s2 WHERE s2.score > s1.score) AS score_rank FROM scores s1 JOIN (SELECT subject, AVG(sco…...

用户数据报协议UDP
UDP的格式 载荷存放的是:应用层完整的UDP数据报 报头结构: 源端口号:发出的信息的来源端口目的端口号:信息要到达的目的端口UDP长度:2个字节(16位),即UDP总长度为:2^16bit 2^10bit * 2^6bit 1KB * 64 64KB.所以一个UDP的最大长度为64KBUDP校验和:网络的传输并非稳定传输,…...

STM32F429IGT6使用CubeMX配置外部中断按键
1、硬件电路 2、设置RCC,选择高速外部时钟HSE,时钟设置为180MHz 3、配置GPIO引脚 4、NVIC配置 PC13相同 5、生成工程配置 6、部分代码 中断回调函数 /* USER CODE BEGIN 0 */void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) {if(GPIO_Pin GPIO_PIN_0){HAL_GPIO…...

时序预测 | Python实现LSTM长短期记忆网络时间序列预测(电力负荷预测)
时序预测 | Python实现LSTM长短期记忆网络时间序列预测(电力负荷预测) 目录 时序预测 | Python实现LSTM长短期记忆网络时间序列预测(电力负荷预测)效果一览基本描述模型结构程序设计参考资料效果一览...
[开发|前端] 路由守卫笔记
描述 vue-router提供的导航跳转或取消的api。 router.beforeEach 切换路由前调用 router.beforeResolve 组件内路由守卫解析之后调用,和beforeEach用法类似 router.afterEach 切换后调用 全局路由守卫有上面3个,调用时机不同 路由守卫都有3个参数 …...

网络基础——网络的由来与发展史
作者:Insist-- 个人主页:insist--个人主页 作者会持续更新网络知识和python基础知识,期待你的关注 目录 一、网络的由来 二、计算机网络的发展史 1、第一阶段 2、第二阶段 3、第三阶段 前言 每天都是使用网络,那么你知道网络…...
八数码(bfs)
思路: (1)用string来存储状态,用d<string,int>来记录状态变换次数; (2)在bfs过程中,先初始化(q,d);每次拿出队头状态,得到x的相对位置&am…...

CCLINK IE FIELD BASIC转MODBUS-TCP网关cclink与以太网的区别
协议的不同,数据读取困难,这是很多生产管理系统的难题。但是现在,捷米JM-CCLKIE-TCP通讯网关,让这个问题变得非常简单。这款通讯网关可以将各种MODBUS-TCP设备接入到CCLINK IE FIELD BASIC网络中,连接到MODBUS-TCP总线…...

【Rust】Rust学习 第十一章编写自动化测试
Rust 是一个相当注重正确性的编程语言,不过正确性是一个难以证明的复杂主题。Rust 的类型系统在此问题上下了很大的功夫,不过它不可能捕获所有种类的错误。为此,Rust 也在语言本身包含了编写软件测试的支持。 编写一个叫做 add_two 的将传递…...

关于使用pycharm遇到只能使用unittest方式运行,无法直接选择Run
相信大家可能都遇到过这个问题,使用pycharm直接运行脚本的时候,只能选择unittest的方式,能愁死个人 经过几次各种尝试无果之后,博主就放弃死磕了,原谅博主是个菜鸟 后来遇到这样的问题,往往也就直接使用cm…...

Docker+rancher部署SkyWalking8.5并应用在springboot服务中
1.Skywalking介绍 Skywalking是一个国产的开源框架,2015年有吴晟个人开源,2017年加入Apache孵化器,国人开源的产品,主要开发人员来自于华为,2019年4月17日Apache董事会批准SkyWalking成为顶级项目,支持Jav…...
代码随想录第45天 | 322. 零钱兑换、279. 完全平方数
322. 零钱兑换 动规五部曲分析如下: 确定dp数组以及下标的含义 dp[j]:凑足总额为j所需钱币的最少个数为dp[j] 确定递推公式 凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] 1就是…...
怎么加入Microsoft Cloud Partner Program?
目录 前言 加入Microsoft Cloud Partner Program 1、注册成为微软合作伙伴 2、完成合作伙伴资格要求...

LNMP简易搭建
目录 前言 一、拓扑图 二、NGINX配置 三、配置MySQL 四、配置php环境 五、部署应用 总结 前言 LNMP平台指的是将Linux、Nginx、MySQL和PHP(或者其他的编程语言,如Python、Perl等)集成在一起的一种Web服务器环境。它是一种常用的开发和部署网…...

CClink IE转Modbus TCP网关连接三菱FX5U PLC
捷米JM-CCLKIE-TCP 是自主研发的一款 CCLINK IE FIELD BASIC 从站功能的通讯网关。该产品主要功能是将各种 MODBUS-TCP 设备接入到 CCLINK IE FIELD BASIC 网络中。 捷米JM-CCLKIE-TCP网关连接到 CCLINK IE FIELD BASIC 总线中做为从站使用,连接到 MODBUS-TCP 总线…...

PyTorch 微调终极指南:第 1 部分 — 预训练模型及其配置
一、说明 如今,在训练深度学习模型时,通过在自己的数据上微调预训练模型来迁移学习已成为首选方法。通过微调这些模型,我们可以利用他们的专业知识并使其适应我们的特定任务,从而节省宝贵的时间和计算资源。本文分为四个部分&…...

GO学习之 微框架(Gin)
GO系列 1、GO学习之Hello World 2、GO学习之入门语法 3、GO学习之切片操作 4、GO学习之 Map 操作 5、GO学习之 结构体 操作 6、GO学习之 通道(Channel) 7、GO学习之 多线程(goroutine) 8、GO学习之 函数(Function) 9、GO学习之 接口(Interface) 10、GO学习之 网络通信(Net/Htt…...

C语言 字符指针
1、介绍 概念: 字符指针,就是字符类型的指针,同整型指针,指针指向的元素表示整型一样,字符指针指向的元素表示的是字符。 假设: char ch a;char * pc &ch; pc 就是字符指针变量,字符指…...
Springboot所有的依赖
<properties><maven.compiler.source>8</maven.compiler.source><maven.compiler.target>8</maven.compiler.target><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding><!-- 声明springboot的版本号 -->…...

Flutter BottomSheet 三段式拖拽
BottomSheetBehavior 追踪 BottomSheet系统默认实现效果准备要实现的功能点:定义三段式状态:BottomSheetBehavoir阀值定义1. 未达到滚动阀值,恢复状态2. 达到滚动阀值,更新状态 前面倒是有讲过Android原生的BottomSheetBehavior&a…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
C++:std::is_convertible
C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...

前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...
管理学院权限管理系统开发总结
文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...

中医有效性探讨
文章目录 西医是如何发展到以生物化学为药理基础的现代医学?传统医学奠基期(远古 - 17 世纪)近代医学转型期(17 世纪 - 19 世纪末)现代医学成熟期(20世纪至今) 中医的源远流长和一脉相承远古至…...