第三章,矩阵,07-用初等变换求逆矩阵、矩阵的LU分解
第三章,矩阵,07-用初等变换求逆矩阵、矩阵的LU分解
- 一个基本的方法
- 求 A − 1 B A^{-1}B A−1B
- LU分解
- 例1,求矩阵A的LU分解:
- 例12,LU分解解线性方程组:
玩转线性代数(19)初等矩阵与初等变换的相关应用的笔记,例见原文
一个基本的方法
已知: A r ∼ F A^r \sim F Ar∼F,求可逆阵 P P P,使 P A = F PA = F PA=F ( F F F为 A A A的行最简形)
方法:利用初等行变换,将矩阵A左边所乘初等矩阵相乘,从而得到可逆矩阵P.
步骤:
(1)对矩阵A进行l次初等行变换至行最简形:
A r ∼ F A^r \sim F Ar∼F,即 P l . . . P 2 P 1 A r = F P_l...P_2P_1A^r = F Pl...P2P1Ar=F
(2)求 P = P l . . . P 2 P 1 P=P_l...P_2P_1 P=Pl...P2P1
将 ( A , E ) (A, E) (A,E)看成分块矩阵,后面的E为记录器,对分块矩阵 ( A , E ) (A, E) (A,E)进行初等行变换:
( A , E ) → P l . . . P 2 P 1 ( A , E ) → ( P l . . . P 2 P 1 A , P l . . . P 2 P 1 ) → ( P A , P ) → ( F , P ) (A, E) \rightarrow P_l...P_2P_1(A, E) \rightarrow (P_l...P_2P_1A, P_l...P_2P_1) \rightarrow (PA, P) \rightarrow (F, P) (A,E)→Pl...P2P1(A,E)→(Pl...P2P1A,Pl...P2P1)→(PA,P)→(F,P)
即当A化为F后E化为P。
那么若A可逆, A − 1 A = E A^{-1}A = E A−1A=E,即将A化为单位阵,右边的E就化为 A − 1 A^{-1} A−1
求 A − 1 B A^{-1}B A−1B
即将上面的“记录器”E换为B,将A化为E的一系列行变换操作(等效于左乘 A − 1 A^{-1} A−1)全部作用到B上
A − 1 ( A , B ) = ( E , A − 1 B ) A^{-1}(A, B)=(E,A^{-1}B) A−1(A,B)=(E,A−1B)
LU分解
假设A是m*n矩阵并且可以化简为行阶梯形而不必经过行对换或数乘,则A可以分解成如下的形式:
A = ( 1 0 0 0 ∗ 1 0 0 ∗ ∗ 1 0 ∗ ∗ ∗ 1 ) ( ■ ∗ ∗ ∗ ∗ 0 ■ ∗ ∗ ∗ 0 0 0 ■ ∗ 0 0 0 0 0 ) = L U A= \begin{pmatrix} 1 & 0 & 0 & 0 \\* & 1 & 0 & 0 \\* & * & 1 & 0\\* & * & * & 1 \end{pmatrix} \begin{pmatrix} \blacksquare & * & * & * & * \\0 & \blacksquare & * & * & * \\0 & 0 & 0 & \blacksquare & *\\0 & 0 & 0 & 0 & 0 \end{pmatrix} =LU A= 1∗∗∗01∗∗001∗0001 ■000∗■00∗∗00∗∗■0∗∗∗0 =LU
L是单位下三角矩阵,主对角线元素全是1,它其实是一系列 E ( i j ( k ) ) E(ij(k)) E(ij(k))类型初等矩阵的乘积,L可逆;U是A的一个等价的行阶梯形矩阵。
例1,求矩阵A的LU分解:
令
A = ( 2 4 2 1 5 2 4 − 1 9 ) A= \begin{pmatrix} 2 & 4 & 2 \\ 1 & 5 & 2 \\ 4 & -1 & 9 \end{pmatrix} A= 21445−1229
则
( A , E ) = ( 2 4 2 1 0 0 1 5 2 0 1 0 4 − 1 9 0 0 1 ) ∼ ( 2 4 2 1 0 0 0 3 1 − 1 2 1 0 0 − 9 5 − 2 0 1 ) ∼ ( 2 4 2 1 0 0 0 3 1 − 1 2 1 0 0 0 8 − 7 2 3 1 ) = ( U , p ) (A,E)=\begin{pmatrix} 2 & 4 & 2 & 1 & 0 & 0 \\ 1 & 5 & 2 & 0 & 1 & 0 \\ 4 & -1 & 9 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 2 & 4 & 2 & 1 & 0 & 0 \\ 0 & 3 & 1 & -\frac{1}{2} & 1 & 0 \\ 0 & -9 & 5 & -2 & 0 & 1 \end{pmatrix}\sim \begin{pmatrix} 2 & 4 & 2 & 1 & 0 & 0 \\ 0 & 3 & 1 & -\frac{1}{2} & 1 & 0 \\ 0 & 0 & 8 & -\frac{7}{2} & 3 & 1 \end{pmatrix} =(U, p) (A,E)= 21445−1229100010001 ∼ 20043−92151−21−2010001 ∼ 2004302181−21−27013001 =(U,p)
故 U = P A ⇒ A = P − 1 U U=PA \Rightarrow A=P^{-1}U U=PA⇒A=P−1U,有
A = ( 2 4 2 1 5 2 4 − 1 9 ) = ( 1 0 0 1 2 1 0 2 − 3 1 ) ( 2 4 2 0 3 1 0 0 8 ) = L U A= \begin{pmatrix} 2 & 4 & 2 \\ 1 & 5 & 2 \\ 4 & -1 & 9 \end{pmatrix}= \begin{pmatrix} 1 & 0 & 0\\ \frac{1}{2} & 1 & 0\\ 2 & -3 & 1 \end{pmatrix} \begin{pmatrix} 2 & 4 & 2\\ 0 & 3 & 1\\ 0 & 0 & 8 \end{pmatrix}=LU A= 21445−1229 = 121201−3001 200430218 =LU
例12,LU分解解线性方程组:
将系数矩阵进行LU分解,然后分两步解出方程

在具体求解时要使用数学软件来求,计算机解线性方程组时就采用LU分解.手动进行LU分解当然是比较麻烦的.
相关文章:
第三章,矩阵,07-用初等变换求逆矩阵、矩阵的LU分解
第三章,矩阵,07-用初等变换求逆矩阵、矩阵的LU分解 一个基本的方法求 A − 1 B A^{-1}B A−1BLU分解例1,求矩阵A的LU分解:例12,LU分解解线性方程组: 玩转线性代数(19)初等矩阵与初等变换的相关应用的笔记&a…...
STM32F429IGT6使用CubeMX配置SPI通信(W25Q256芯片)
1、硬件电路 需要系统性的看一下W25Q256芯片手册 2、设置RCC,选择高速外部时钟HSE,时钟设置为180MHz 3、配置SPI 4、生成工程配置 5、相关代码 #define sFLASH_ID 0XEF4019 // W25Q256#define SPI_FLASH_PageSize 256 #define SPI_FLASH_PerWritePageSize 256#def…...
C++11异步与通信之 packaged_task
概念简介 packaged_task 用于包装可调用目标(Callable)为一个对象,如lambda,普通函数,小括号重载等,用于异步调用。 其返回值或所抛异常被存储于能通过 std::future 对象访问的共享状态中,和promise类似。 将函数的调用与函数返…...
磁盘的管理
一、磁盘的分区 查看磁盘 lsblk fdisk -l 2、分区 没有e扩展,则都是主分区,已经有三个主分区了,剩下的全设置为扩展 查看分区结果: 二、格式化 三、挂载...
数据结构:完全二叉树的性质
完全二叉树的性质: 具有 n n n个结点的完全二叉树的深度为 [ l o g 2 n ] 1 ( [ x ] 表示不大于 x 的最大整数 ) [log_2n]1([x]表示不大于x的最大整数) [log2n]1([x]表示不大于x的最大整数) 对于任意一个结点 ( 1 < i < n ) &…...
【数据结构】‘双向链表’冲冲冲
💐 🌸 🌷 🍀 🌹 🌻 🌺 🍁 🍃 🍂 🌿 🍄🍝 🍛 🍤 📃个人主页 :阿然成长日记 …...
Linux 编译CEF源码详细记录
Linux CEF(Chromium Embedded Framework)源码下载编译 背景 由于CEF默认的二进制分发包不支持音视频播放,需要自行编译源码,将ffmpeg开关打开才能支持。这里介绍的是Linux平台下的CEF源码下载编译过程。 Windows平台参考&#…...
LeetCode 2810. Faulty Keyboard【模拟,双端队列,字符串】简单
本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章…...
两个数组的交集-C语言/Java
描述 给定两个数组 nums1 和 nums2 ,返回 它们的交集 。输出结果中的每个元素一定是 唯一 的。我们可以 不考虑输出结果的顺序。(1 < nums1.length, nums2.length < 1000,0 < nums1[i], nums2[i] < 1000) 示例1 输入…...
Arduino+esp32学习笔记
学习目标: 使用Arduino配置好蓝牙或者wifi模块 学习使用python配置好蓝牙或者wifi模块 学习内容(笔记): 一、 Arduino语法基础 Arduino语法是基于C的语法,C又是c基础上增加了面向对象思想等进阶语言。那就只记录没见过的。 单多…...
计算机网络-专业术语
计算机网络-专业术语 实体 实体:任何可发送或接收信息的硬件或软件进程 对等实体:收发双方相同层次中的实体 协议 控制两个对等实体进行逻辑通信的规则的集合 协议三要素 语法 定义所交换的信息的格式 是用户数据与控制信息的结构和格式 语义 定义收发双方所需要完成的操作…...
E. Maximum Monogonosity
You are given an array aa of length nn and an array bb of length nn. The cost of a segment [l,r][l,r], 1≤l≤r≤n1≤l≤r≤n, is defined as |bl−ar||br−al||bl−ar||br−al|. Recall that two segments [l1,r1][l1,r1], 1≤l1≤r1≤n1≤l1≤r1≤n, and [l2,r2][l2,…...
已解决Excel file format cannot be determined, you must specify an engine manually
问题 我使用以下语句时出现错误 data pd.read_excel(temp_inputc.csv, headerNone)出现错误: Excel file format cannot be determined, you must specify an engine manually有很多人说添加engine,但接下来会出现这个错误: File is not…...
Centos yum命令大全
1.使用YUM查找软件包 $ yum search python 2.列出所有可安装的软件包 $ yum list | grep python 3.列出所有可更新的软件包 $ yum list updates 4.列出所有已安装的软件包 $ yum list installed | grep python...
内网横向移动—ARP攻击图片捕捉数据劫持DNS劫持
内网横向移动—ARP攻击&图片捕捉&数据劫持&DNS劫持 1. ARP1.1. APR介绍1.1.1. ARP工作原理1.1.2. APR欺骗工作原理 1.2. 环境准备1.3. 适用场景 2. ARP断网攻击演示2.1. 使用kali进行演示2.1.1. nmap判断存活2.1.2. 安装工具2.1.3. 攻击Windows 10虚拟机2.1.3.1. 查…...
react之Hooks的介绍、useState与useEffect副作用的使用
react之Hooks的介绍、useState与useEffect副作用的使用 一、Hooks的基本介绍二、useState的使用2.1 简单使用2.2 数组结构简化2.3 状态的读取和修改2.3 组件的更新过程 三、useEffect的使用3.1 副作用介绍3.2 基本使用3.3 依赖3.4 不要对依赖项撒谎3.5 依赖项可以是空数组3.6 清…...
django——创建 Django 项目和 APP
2.创建 Django 项目和 APP 命令: 创建Django项目 django-admin startproject name 创建子应用 python manager.py startapp name 2.1 创建工程 在使用Flask框架时,项目工程目录的组织与创建是需要我们自己手动创建完成的。 在django中,…...
== 和 equals 的对比 [面试题]
和 equals 的对比[面试题] 文章目录 和 equals 的对比[面试题]1. 和 equals 简介2. Object 类中 equals() 源码3. String 类中 equals() 源码4. Integer 类中 equals() 源码5. 如何重写 equals 方法 1. 和 equals 简介 是一个比较运算符 :既可以判断基本数据类型…...
SpringBoot集成Redis及Redis使用方法
目录 应用背景 Redis简介 更新问题 一:环境配置 1.1: 在pom.xml文件中添加依赖 1.2:配置SpringBoot核心配置文件application.properties 二:在Config文件夹中创建RedisConfig配置文件类 2.1:RedisTemplate中的几个角色&am…...
Redis可以用作数据库吗?它的适用场景是什么?
是的,Redis可以用作数据库。虽然Redis通常被认为是一个内存数据库(in-memory database),但它也可以通过持久化机制将数据保存在磁盘上,以便在重启后恢复数据。 Redis的适用场景包括但不限于以下几个方面: …...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
服务器--宝塔命令
一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行! sudo su - 1. CentOS 系统: yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...
【JVM面试篇】高频八股汇总——类加载和类加载器
目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...
CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝
目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为:一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...
tauri项目,如何在rust端读取电脑环境变量
如果想在前端通过调用来获取环境变量的值,可以通过标准的依赖: std::env::var(name).ok() 想在前端通过调用来获取,可以写一个command函数: #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...
k8s从入门到放弃之HPA控制器
k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率(或其他自定义指标)来调整这些对象的规模,从而帮助应用程序在负…...
32单片机——基本定时器
STM32F103有众多的定时器,其中包括2个基本定时器(TIM6和TIM7)、4个通用定时器(TIM2~TIM5)、2个高级控制定时器(TIM1和TIM8),这些定时器彼此完全独立,不共享任何资源 1、定…...
