当前位置: 首页 > news >正文

第三章,矩阵,07-用初等变换求逆矩阵、矩阵的LU分解

第三章,矩阵,07-用初等变换求逆矩阵、矩阵的LU分解


玩转线性代数(19)初等矩阵与初等变换的相关应用的笔记,例见原文

一个基本的方法

已知: A r ∼ F A^r \sim F ArF,求可逆阵 P P P,使 P A = F PA = F PA=F ( F F F A A A的行最简形)
方法:利用初等行变换,将矩阵A左边所乘初等矩阵相乘,从而得到可逆矩阵P.
步骤:
(1)对矩阵A进行l次初等行变换至行最简形:
A r ∼ F A^r \sim F ArF,即 P l . . . P 2 P 1 A r = F P_l...P_2P_1A^r = F Pl...P2P1Ar=F
(2)求 P = P l . . . P 2 P 1 P=P_l...P_2P_1 P=Pl...P2P1
( A , E ) (A, E) (A,E)看成分块矩阵,后面的E为记录器,对分块矩阵 ( A , E ) (A, E) (A,E)进行初等行变换:
( A , E ) → P l . . . P 2 P 1 ( A , E ) → ( P l . . . P 2 P 1 A , P l . . . P 2 P 1 ) → ( P A , P ) → ( F , P ) (A, E) \rightarrow P_l...P_2P_1(A, E) \rightarrow (P_l...P_2P_1A, P_l...P_2P_1) \rightarrow (PA, P) \rightarrow (F, P) (A,E)Pl...P2P1(A,E)(Pl...P2P1A,Pl...P2P1)(PA,P)(F,P)
即当A化为F后E化为P。
那么若A可逆, A − 1 A = E A^{-1}A = E A1A=E,即将A化为单位阵,右边的E就化为 A − 1 A^{-1} A1

A − 1 B A^{-1}B A1B

即将上面的“记录器”E换为B,将A化为E的一系列行变换操作(等效于左乘 A − 1 A^{-1} A1)全部作用到B上
A − 1 ( A , B ) = ( E , A − 1 B ) A^{-1}(A, B)=(E,A^{-1}B) A1(A,B)=(E,A1B)

LU分解

假设A是m*n矩阵并且可以化简为行阶梯形而不必经过行对换或数乘,则A可以分解成如下的形式:
A = ( 1 0 0 0 ∗ 1 0 0 ∗ ∗ 1 0 ∗ ∗ ∗ 1 ) ( ■ ∗ ∗ ∗ ∗ 0 ■ ∗ ∗ ∗ 0 0 0 ■ ∗ 0 0 0 0 0 ) = L U A= \begin{pmatrix} 1 & 0 & 0 & 0 \\* & 1 & 0 & 0 \\* & * & 1 & 0\\* & * & * & 1 \end{pmatrix} \begin{pmatrix} \blacksquare & * & * & * & * \\0 & \blacksquare & * & * & * \\0 & 0 & 0 & \blacksquare & *\\0 & 0 & 0 & 0 & 0 \end{pmatrix} =LU A= 1010010001 000000000 =LU
L是单位下三角矩阵,主对角线元素全是1,它其实是一系列 E ( i j ( k ) ) E(ij(k)) E(ij(k))类型初等矩阵的乘积,L可逆;U是A的一个等价的行阶梯形矩阵。

例1,求矩阵A的LU分解:


A = ( 2 4 2 1 5 2 4 − 1 9 ) A= \begin{pmatrix} 2 & 4 & 2 \\ 1 & 5 & 2 \\ 4 & -1 & 9 \end{pmatrix} A= 214451229

( A , E ) = ( 2 4 2 1 0 0 1 5 2 0 1 0 4 − 1 9 0 0 1 ) ∼ ( 2 4 2 1 0 0 0 3 1 − 1 2 1 0 0 − 9 5 − 2 0 1 ) ∼ ( 2 4 2 1 0 0 0 3 1 − 1 2 1 0 0 0 8 − 7 2 3 1 ) = ( U , p ) (A,E)=\begin{pmatrix} 2 & 4 & 2 & 1 & 0 & 0 \\ 1 & 5 & 2 & 0 & 1 & 0 \\ 4 & -1 & 9 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 2 & 4 & 2 & 1 & 0 & 0 \\ 0 & 3 & 1 & -\frac{1}{2} & 1 & 0 \\ 0 & -9 & 5 & -2 & 0 & 1 \end{pmatrix}\sim \begin{pmatrix} 2 & 4 & 2 & 1 & 0 & 0 \\ 0 & 3 & 1 & -\frac{1}{2} & 1 & 0 \\ 0 & 0 & 8 & -\frac{7}{2} & 3 & 1 \end{pmatrix} =(U, p) (A,E)= 214451229100010001 2004392151212010001 20043021812127013001 =(U,p)
U = P A ⇒ A = P − 1 U U=PA \Rightarrow A=P^{-1}U U=PAA=P1U,有
A = ( 2 4 2 1 5 2 4 − 1 9 ) = ( 1 0 0 1 2 1 0 2 − 3 1 ) ( 2 4 2 0 3 1 0 0 8 ) = L U A= \begin{pmatrix} 2 & 4 & 2 \\ 1 & 5 & 2 \\ 4 & -1 & 9 \end{pmatrix}= \begin{pmatrix} 1 & 0 & 0\\ \frac{1}{2} & 1 & 0\\ 2 & -3 & 1 \end{pmatrix} \begin{pmatrix} 2 & 4 & 2\\ 0 & 3 & 1\\ 0 & 0 & 8 \end{pmatrix}=LU A= 214451229 = 1212013001 200430218 =LU

例12,LU分解解线性方程组:

将系数矩阵进行LU分解,然后分两步解出方程
在这里插入图片描述
在具体求解时要使用数学软件来求,计算机解线性方程组时就采用LU分解.手动进行LU分解当然是比较麻烦的.

相关文章:

第三章,矩阵,07-用初等变换求逆矩阵、矩阵的LU分解

第三章,矩阵,07-用初等变换求逆矩阵、矩阵的LU分解 一个基本的方法求 A − 1 B A^{-1}B A−1BLU分解例1,求矩阵A的LU分解:例12,LU分解解线性方程组: 玩转线性代数(19)初等矩阵与初等变换的相关应用的笔记&a…...

STM32F429IGT6使用CubeMX配置SPI通信(W25Q256芯片)

1、硬件电路 需要系统性的看一下W25Q256芯片手册 2、设置RCC,选择高速外部时钟HSE,时钟设置为180MHz 3、配置SPI 4、生成工程配置 5、相关代码 #define sFLASH_ID 0XEF4019 // W25Q256#define SPI_FLASH_PageSize 256 #define SPI_FLASH_PerWritePageSize 256#def…...

C++11异步与通信之 packaged_task

概念简介 packaged_task 用于包装可调用目标(Callable)为一个对象,如lambda,普通函数,小括号重载等,用于异步调用。 其返回值或所抛异常被存储于能通过 std::future 对象访问的共享状态中,和promise类似。 将函数的调用与函数返…...

磁盘的管理

一、磁盘的分区 查看磁盘 lsblk fdisk -l 2、分区 没有e扩展,则都是主分区,已经有三个主分区了,剩下的全设置为扩展 查看分区结果: 二、格式化 三、挂载...

数据结构:完全二叉树的性质

完全二叉树的性质&#xff1a; 具有 n n n个结点的完全二叉树的深度为 [ l o g 2 n ] 1 ( [ x ] 表示不大于 x 的最大整数 ) [log_2n]1([x]表示不大于x的最大整数) [log2​n]1([x]表示不大于x的最大整数) 对于任意一个结点 &#xff08; 1 < i < n &#xff09; &…...

【数据结构】‘双向链表’冲冲冲

&#x1f490; &#x1f338; &#x1f337; &#x1f340; &#x1f339; &#x1f33b; &#x1f33a; &#x1f341; &#x1f343; &#x1f342; &#x1f33f; &#x1f344;&#x1f35d; &#x1f35b; &#x1f364; &#x1f4c3;个人主页 &#xff1a;阿然成长日记 …...

Linux 编译CEF源码详细记录

Linux CEF&#xff08;Chromium Embedded Framework&#xff09;源码下载编译 背景 由于CEF默认的二进制分发包不支持音视频播放&#xff0c;需要自行编译源码&#xff0c;将ffmpeg开关打开才能支持。这里介绍的是Linux平台下的CEF源码下载编译过程。 Windows平台参考&#…...

LeetCode 2810. Faulty Keyboard【模拟,双端队列,字符串】简单

本文属于「征服LeetCode」系列文章之一&#xff0c;这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁&#xff0c;本系列将至少持续到刷完所有无锁题之日为止&#xff1b;由于LeetCode还在不断地创建新题&#xff0c;本系列的终止日期可能是永远。在这一系列刷题文章…...

两个数组的交集-C语言/Java

描述 给定两个数组 nums1 和 nums2 &#xff0c;返回 它们的交集 。输出结果中的每个元素一定是 唯一 的。我们可以 不考虑输出结果的顺序。&#xff08;1 < nums1.length, nums2.length < 1000&#xff0c;0 < nums1[i], nums2[i] < 1000&#xff09; 示例1 输入…...

Arduino+esp32学习笔记

学习目标&#xff1a; 使用Arduino配置好蓝牙或者wifi模块 学习使用python配置好蓝牙或者wifi模块 学习内容&#xff08;笔记&#xff09;&#xff1a; 一、 Arduino语法基础 Arduino语法是基于C的语法,C又是c基础上增加了面向对象思想等进阶语言。那就只记录没见过的。 单多…...

计算机网络-专业术语

计算机网络-专业术语 实体 实体:任何可发送或接收信息的硬件或软件进程 对等实体:收发双方相同层次中的实体 协议 控制两个对等实体进行逻辑通信的规则的集合 协议三要素 语法 定义所交换的信息的格式 是用户数据与控制信息的结构和格式 语义 定义收发双方所需要完成的操作…...

E. Maximum Monogonosity

You are given an array aa of length nn and an array bb of length nn. The cost of a segment [l,r][l,r], 1≤l≤r≤n1≤l≤r≤n, is defined as |bl−ar||br−al||bl−ar||br−al|. Recall that two segments [l1,r1][l1,r1], 1≤l1≤r1≤n1≤l1≤r1≤n, and [l2,r2][l2,…...

已解决Excel file format cannot be determined, you must specify an engine manually

问题 我使用以下语句时出现错误 data pd.read_excel(temp_inputc.csv, headerNone)出现错误&#xff1a; Excel file format cannot be determined, you must specify an engine manually有很多人说添加engine&#xff0c;但接下来会出现这个错误&#xff1a; File is not…...

Centos yum命令大全

1.使用YUM查找软件包 $ yum search python 2.列出所有可安装的软件包 $ yum list | grep python 3.列出所有可更新的软件包 $ yum list updates 4.列出所有已安装的软件包 $ yum list installed | grep python...

内网横向移动—ARP攻击图片捕捉数据劫持DNS劫持

内网横向移动—ARP攻击&图片捕捉&数据劫持&DNS劫持 1. ARP1.1. APR介绍1.1.1. ARP工作原理1.1.2. APR欺骗工作原理 1.2. 环境准备1.3. 适用场景 2. ARP断网攻击演示2.1. 使用kali进行演示2.1.1. nmap判断存活2.1.2. 安装工具2.1.3. 攻击Windows 10虚拟机2.1.3.1. 查…...

react之Hooks的介绍、useState与useEffect副作用的使用

react之Hooks的介绍、useState与useEffect副作用的使用 一、Hooks的基本介绍二、useState的使用2.1 简单使用2.2 数组结构简化2.3 状态的读取和修改2.3 组件的更新过程 三、useEffect的使用3.1 副作用介绍3.2 基本使用3.3 依赖3.4 不要对依赖项撒谎3.5 依赖项可以是空数组3.6 清…...

django——创建 Django 项目和 APP

2.创建 Django 项目和 APP 命令&#xff1a; 创建Django项目 django-admin startproject name 创建子应用 python manager.py startapp name 2.1 创建工程 在使用Flask框架时&#xff0c;项目工程目录的组织与创建是需要我们自己手动创建完成的。 在django中&#xff0c;…...

== 和 equals 的对比 [面试题]

和 equals 的对比[面试题] 文章目录 和 equals 的对比[面试题]1. 和 equals 简介2. Object 类中 equals() 源码3. String 类中 equals() 源码4. Integer 类中 equals() 源码5. 如何重写 equals 方法 1. 和 equals 简介 是一个比较运算符 &#xff1a;既可以判断基本数据类型…...

SpringBoot集成Redis及Redis使用方法

目录 应用背景 Redis简介 更新问题 一&#xff1a;环境配置 1.1: 在pom.xml文件中添加依赖 1.2&#xff1a;配置SpringBoot核心配置文件application.properties 二&#xff1a;在Config文件夹中创建RedisConfig配置文件类 2.1&#xff1a;RedisTemplate中的几个角色&am…...

Redis可以用作数据库吗?它的适用场景是什么?

是的&#xff0c;Redis可以用作数据库。虽然Redis通常被认为是一个内存数据库&#xff08;in-memory database&#xff09;&#xff0c;但它也可以通过持久化机制将数据保存在磁盘上&#xff0c;以便在重启后恢复数据。 Redis的适用场景包括但不限于以下几个方面&#xff1a; …...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

九天毕昇深度学习平台 | 如何安装库?

pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子&#xff1a; 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

tomcat入门

1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效&#xff0c;稳定&#xff0c;易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...