Python学习笔记第五十七天(Pandas 数据清洗)
Python学习笔记第五十七天
- Pandas 数据清洗
- Pandas 清洗空值
- isnull()
- Pandas替换单元格
- mean()
- median()
- mode()
- Pandas 清洗格式错误数据
- Pandas 清洗错误数据
- Pandas 清洗重复数据
- duplicated()
- drop_duplicates()
- 后记
Pandas 数据清洗
数据清洗是对一些没有用的数据进行处理的过程。
很多数据集存在数据缺失、数据格式错误、错误数据或重复数据的情况,如果要使数据分析更加准确,就需要对这些没有用的数据进行处理。
在这个教程中,我们将利用 Pandas包来进行数据清洗。
本文使用到的测试数据 property-data.csv 如下:
上表包含了四种空数据:
- n/a
- NA
- —
- na
Pandas 清洗空值
如果我们要删除包含空字段的行,可以使用 dropna() 方法,语法格式如下:
DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)
参数说明:
- axis:默认为 0,表示逢空值剔除整行,如果设置参数 axis=1 表示逢空值去掉整列。
- how:默认为 ‘any’ 如果一行(或一列)里任何一个数据有出现 NA 就去掉整行,如果设置 how=‘all’ 一行(或列)都是 NA 才去掉这整行。
- thresh:设置需要多少非空值的数据才可以保留下来的。
- subset:设置想要检查的列。如果是多个列,可以使用列名的 list 作为参数。
- inplace:如果设置 True,将计算得到的值直接覆盖之前的值并返回 None,修改的是源数据。
isnull()
我们可以通过 isnull() 判断各个单元格是否为空。
# 实例 1
import pandas as pd
df = pd.read_csv('property-data.csv')
print (df['NUM_BEDROOMS'])
print (df['NUM_BEDROOMS'].isnull())
以上例子中Pandas 把 n/a 和 NA 当作空数据,na 不是空数据,不符合我们要求,我们可以指定空数据类型:
# 实例 2
import pandas as pd
missing_values = ["n/a", "na", "--"]
df = pd.read_csv('property-data.csv', na_values = missing_values)
print (df['NUM_BEDROOMS'])
print (df['NUM_BEDROOMS'].isnull())
使用 pd.read_csv 函数读取了一个名为 ‘property-data.csv’ 的CSV文件,并将其存储在 df 变量中,df.dropna() 这行代码从原始DataFrame(在变量 df 中)中删除了包含空数据的行,将新的不含空数据行DataFrame转换为字符串并打印出来。
# 实例 3
import pandas as pd
df = pd.read_csv('property-data.csv')
new_df = df.dropna()
print(new_df.to_string())
注意:默认情况下,dropna() 方法返回一个新的 DataFrame,不会修改源数据。
如果你的 ‘property-data.csv’ 文件中有一些行包含空数据(例如,某个或多个列的值为空),那么这些行将会被删除,新的DataFrame(new_df)将不包含这些行。
需要注意的是,dropna() 默认会删除包含至少一个NaN值的行。如果你想删除所有NaN值并且只保留没有缺失值的行,你可以使用 dropna(how=‘all’)。
此外,你还可以通过设置 axis 参数来指定是行还是列应该被删除。例如,df.dropna(axis=1) 将删除包含空数据的列。
如果你要修改源数据 DataFrame, 可以使用 inplace = True 参数
# 实例 4
import pandas as pd
df = pd.read_csv('property-data.csv')
df.dropna(inplace = True)
print(df.to_string())
也可以移除指定列有空值的行
# 实例 5
import pandas as pd
df = pd.read_csv('property-data.csv')
# 移除 ST_NUM 列中字段值为空的行
df.dropna(subset=['ST_NUM'], inplace = True)
print(df.to_string())
也可以 fillna() 方法来替换一些空字段
# 实例 6
import pandas as pd
df = pd.read_csv('property-data.csv')
# 使用 12345 替换空字段
df.fillna(12345, inplace = True)
print(df.to_string())
也可以指定某一个列来替换数据:
# 实例 7
import pandas as pd
df = pd.read_csv('property-data.csv')
# 使用 12345 替换 PID 为空数据:
df['PID'].fillna(12345, inplace = True)
print(df.to_string())
Pandas替换单元格
替换空单元格的常用方法是计算列的均值、中位数值或众数。
Pandas使用 mean()、median() 和 mode() 方法计算列的均值(所有值加起来的平均值)、中位数值(排序后排在中间的数)和众数(出现频率最高的数)。
mean()
使用 mean() 方法计算列的均值并替换空单元格
# 实例 8
import pandas as pd
df = pd.read_csv('property-data.csv')
x = df["ST_NUM"].mean()
df["ST_NUM"].fillna(x, inplace = True)
print(df.to_string())
median()
使用 median() 方法计算列的中位数并替换空单元格
# 实例 9
import pandas as pd
df = pd.read_csv('property-data.csv')
x = df["ST_NUM"].median()
df["ST_NUM"].fillna(x, inplace = True)
print(df.to_string())
mode()
使用 mode() 方法计算列的众数并替换空单元格
# 实例 10
import pandas as pd
df = pd.read_csv('property-data.csv')
x = df["ST_NUM"].mode()
df["ST_NUM"].fillna(x, inplace = True)
print(df.to_string())
Pandas 清洗格式错误数据
数据格式错误的单元格会使数据分析变得困难,甚至不可能。
我们可以通过包含空单元格的行,或者将列中的所有单元格转换为相同格式的数据。
以下实例会格式化日期:
# 实例 11
import pandas as pd
# 第三个日期格式错误
data = {"Date": ['2020/12/01', '2020/12/02' , '20201226'],"duration": [50, 40, 45]
}
df = pd.DataFrame(data, index = ["day1", "day2", "day3"])
df['Date'] = pd.to_datetime(df['Date'])
print(df.to_string())
Pandas 清洗错误数据
数据错误也是很常见的情况,我们可以对错误的数据进行替换或移除。
以下实例会替换错误年龄的数据:
# 实例 12
import pandas as pd
person = {"name": ['Google', 'Baidu' , 'Taobao'],"age": [50, 40, 12345] # 12345 年龄数据是错误的
}
df = pd.DataFrame(person)
df.loc[2, 'age'] = 30 # 修改数据
print(df.to_string())
也可以设置条件语句,将 age 大于 120 的设置为 120
# 实例 13
import pandas as pd
person = {"name": ['Google', 'Baidu' , 'Taobao'],"age": [50, 200, 12345]
}
df = pd.DataFrame(person)
for x in df.index:if df.loc[x, "age"] > 120:df.loc[x, "age"] = 120
print(df.to_string())
也可以将错误数据的行删除,将 age 大于 120 的删除
# 实例 14
import pandas as pd
person = {"name": ['Google', 'Baidu' , 'Taobao'],"age": [50, 40, 12345] # 12345 年龄数据是错误的
}
df = pd.DataFrame(person)
for x in df.index:if df.loc[x, "age"] > 120:df.drop(x, inplace = True)
print(df.to_string())
Pandas 清洗重复数据
如果我们要清洗重复数据,可以使用 duplicated() 和 drop_duplicates() 方法。
duplicated()
如果对应的数据是重复的,duplicated() 会返回 True,否则返回 False。
# 实例 15
import pandas as pd
person = {"name": ['Google', 'Baidu', 'Baidu', 'Taobao'],"age": [50, 40, 40, 23]
}
df = pd.DataFrame(person)
print(df.duplicated())
drop_duplicates()
删除重复数据,可以直接使用drop_duplicates() 方法。
# 实例 16
import pandas as pdpersons = {"name": ['Google', 'Runoob', 'Runoob', 'Taobao'],"age": [50, 40, 40, 23]
}df = pd.DataFrame(persons)df.drop_duplicates(inplace = True)
print(df)
后记
今天学习的是Python Pandas 数据清洗学会了吗。 今天学习内容总结一下:
- Pandas 数据清洗
- Pandas 清洗空值
- Pandas替换单元格
- Pandas 清洗格式错误数据
- Pandas 清洗错误数据
- Pandas 清洗重复数据
相关文章:

Python学习笔记第五十七天(Pandas 数据清洗)
Python学习笔记第五十七天 Pandas 数据清洗Pandas 清洗空值isnull() Pandas替换单元格mean()median()mode() Pandas 清洗格式错误数据Pandas 清洗错误数据Pandas 清洗重复数据duplicated()drop_duplicates() 后记 Pandas 数据清洗 数据清洗是对一些没有用的数据进行处理的过程…...

Elasticsearch的一些基本概念
文章目录 基本概念:文档和索引JSON文档元数据索引REST API 节点和集群节点Master eligible节点和Master节点Data Node 和 Coordinating Node其它节点 分片(Primary Shard & Replica Shard)分片的设定操作命令 基本概念:文档和索引 Elasticsearch是面…...

Guitar Pro8专业版吉他学习、绘谱、创作软件
Guitar Pro 8 专业版更强大!更优雅!更完美!Guitar Pro 8.0 五年磨一剑!多达30项功能优化!Guitar Pro8 版本一共更新近30项功能,令吉他打谱更出色!Guitar Pro8 是自2017年4月发布7.0之后发布的最…...

SpringBoot复习(39)Servlet容器的自动配置原理
Servlet容器自动配置类为ServletWebServerFactoryAutoConfiguration 可以看到通过Import注解导入了三个配置类: 通过这个这三个配置类可以看出,它们都使用了ConditionalOnClass注解,当类路径存在tomcat相关的类时,会配置一个T…...

【前端 | CSS】盒模型clientWidth、clientHeight、offsetWidht、offsetHeight
图 先看一个例子 html <div class"container"><div class"item">内容内容内容内容内容内容内容内容内容内容内容内容内容内容内容内容内容内容内容内容内容内容内容内容内容内容内容内容内容内容内容内容内容内容内容内容</div> </…...
Django 高级指南:深入理解和使用类视图和中间件
Django 是一款强大的 Python Web 框架,它提供了一套完整的解决方案,让我们能够用 Python 语言快速开发和部署复杂的 Web 应用。在本文中,我们将会深入研究 Django 中的两个高级特性:类视图(Class-Based Viewsÿ…...

《C语言深度解剖》.pdf
🐇 🔥博客主页: 云曦 📋系列专栏:深入理解C语言 💨吾生也有涯,而知也无涯 💛 感谢大家👍点赞 😋关注📝评论 C语言深度解剖.pdf 提取码:yunx...

【小梦C嘎嘎——启航篇】string介绍以及日常使用的接口演示
【小梦C嘎嘎——启航篇】string 使用😎 前言🙌C语言中的字符串标准库中的string类string 比较常使用的接口对上述函数和其他函数的测试代码演示: 总结撒花💞 😎博客昵称:博客小梦 😊最喜欢的座右…...
多个 Github 账户访问 Github
文章目录 多个 Github 账户访问 Github背景步骤 参考 多个 Github 账户访问 Github 背景 如果我想在这台电脑上同时使用两个 Github 账号怎么办呢? 你主机上的 SSH 公钥只能标识出一个账号。如果需要使用另外一个git账号,访问仓库,你需要创…...
c#实现命令模式
下面是一个使用C#实现命令模式的示例代码: using System; using System.Collections.Generic;// 命令接口 public interface ICommand {void Execute();void Undo(); }// 具体命令:打开文件 public class OpenFileCommand : ICommand {private FileMana…...
Kubernetes的默认调度和自定义调度详解
默认调度和自定义调度详解 默认调度 默认调度是 Kubernetes 中的内置机制,它使用调度器组件来管理分配容器的节点。调度器依据以下原则选择合适的节点: 资源需求 :调度器会为每个 Pod 根据其 CPU 和内存需求选择一个具有足够资源的节点。亲…...
使用Spring-Security后,浏览器不能缓存的问题
Spring-Security在默认情况下是不允许客户端进行缓存的,在使用时可以通过禁用Spring-Security中的cacheControl配置项允许缓存。 protected void configure(HttpSecurity http) throws Exception {// 允许缓存配置http.headers().cacheControl().disable(); }...

中睿天下入选河南省网信系统2023年度网络安全技术支撑单位
近日,河南省委网信办发布了“河南省网信系统2023年度网络安全技术支撑单位名单”,中睿天下凭借出色的网络安全技术能力和优势成功入选。 本次遴选由河南省委网信办会同国家计算机网络与信息安全管理中心河南分中心(以下简称安全中心河南分中心…...
代码随想录day44 45 46
这部分的题目主要介绍了完全背包的内容; 主要考虑了两种情况,求组合数还是排列数 先遍历背包,再遍历物品,得到的就是组合数,也就是有顺序 for (int j 0; j < amount; j) { // 遍历背包容量for (int i 0; i <…...

一探Linux下的七大进程状态
文章目录 一、前言二、操作系统学科下的进程状态1、运行状态2、阻塞状态3、挂起状态 三、Linux下的7种进程状态1、运行状态R2、浅度睡眠状态S3、深度睡眠状态D一场有趣的官司 4、停止状态T5、进程跟踪状态t6、死亡状态X7、僵死状态Z —— 两个特殊进程① 僵尸进程② 孤儿进程 四…...

香港站群服务器为什么适合seo优化?
香港站群为什么适合seo优化?本文主要从以下四点出发进行原因阐述。 1.香港站群服务器的优势 2.香港站群服务器与国内服务器的对比 3.多IP站群服务器的优势 4.香港站群服务器在SEO优化中的注意事项 1.香港站群服务器的优势 香港站群服务器是为了满足企业SEO优化需求而提供…...

虚拟机内搭建CTFd平台搭建及CTF题库部署,局域网内机器可以访问
一、虚拟机环境搭建 1、安装docker、git、docker-compose ubuntu: sudo apt-get update #更新系统 sudo apt-get -y install docker.io #安装docker sudo apt-get -y install git #安装git sudo apt-get -y install python3-pip #安装pip3 sudo pip install dock…...

qq录屏怎么弄?手把手教会你!
“有没有人知道qq怎么录屏呀,听说qq可以录屏,刚好最近需要录制屏幕,就想用qq去录,但是找了很久,都没找到,有人知道吗,谢谢了。” 在如今数字化时代,屏幕录制已成为广泛使用的工具。…...

一文读懂c++语言
一文读懂C语言 C的发展C的设计目标C的特性C的挑战 C的发展 C是一种通用的、高级的编程语言,它是C语言的扩展。C由Bjarne Stroustrup于1983年首次引入,并在之后的几十年中不断发展壮大。C被广泛应用于各种领域,包括系统开发、游戏开发、嵌入式…...
BERT数据处理,模型,预训练
代码来自李沐老师《动手学pytorch》 在数据处理时,首先执行以下代码 def load_data_wiki(batch_size, max_len):"""加载WikiText-2数据集"""num_workers d2l.get_dataloader_workers()data_dir d2l.download_extract(wikitext-2, w…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...

黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...

多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...
从面试角度回答Android中ContentProvider启动原理
Android中ContentProvider原理的面试角度解析,分为已启动和未启动两种场景: 一、ContentProvider已启动的情况 1. 核心流程 触发条件:当其他组件(如Activity、Service)通过ContentR…...