当前位置: 首页 > news >正文

迪瑞克斯拉算法

迪锐克斯拉算法
简单来说就是在有向图中,给定一个图中具体的出发点,从这个点出发能够到达的所有的点,每个点的最短距离是多少。到不了的点,距离则是正无穷。有向,无负权重,可以有环
所以说,迪锐克斯拉算法是生成一个从源点出发到各个点的最小距离表。
举例:有向图如图所示
在这里插入图片描述

从给定的出发点a出发,最终要获得的是a到b,c,d,e每个点之间的最短距离。默认a到自己的距离是0,其他的点还没到达的点的距离是正无穷。已经确定的答案不动,在没有确定的记录中找一个最小的出来

abcde
0正无穷正无穷正无穷正无穷

所以先从a点出发的三条边1,2,6。中找出权重为1的边,ad距离为1,小于之前的正无穷(比之前距离小),所以更新a到d之间的距离,bcd同理。所以更新完后距离如下:

abcde
0261正无穷

此时,从a出发的三条边已经走完,所以a点确定下来,再也不动。
其余没有确定的记录中d是最短的(从a出发到b的距离为1),所以从d开始向下找(d属于中间的跳点)。
d出发的边有两条,分别是dc和de。其中dc距离为2,再加上之前a到d的距离为1,所以此时a到c的距离经过d跳转后为3,小于之前的6,所以更新ac之间距离,同样de距离7小于正无穷。所以也进行更新。d也确定了。

abcde
02317

接下来从不确定的记录中根据最小的向下找。b点出发的边有一条be,be距离9加上a到b的距离2,所以be距离为11,大于之前的,不更新。b也确定了。

abcde
02317

还剩下c,从c点出发的边有两条,cb和ce,因为b点已经确定了不再动,所以一看ce一条,ce距离为3,a到c距离为3,所以ae之间距离为6,小于之前,更新e点距离。

abcde
02316

代码
根据上面的分析进行代码的实现,不过getMinDistanceAndUnSelectNode有瑕疵,因为每找一个minNode就会在集合中都遍历一次。会在下面进行代码优化。

  public static HashMap<Node, Integer> dijkstra1(Node from) {HashMap<Node, Integer> distanceMap = new HashMap<>();distanceMap.put(from, 0);//已经确定的边;HashSet<Node> selectedNodes = new HashSet<>();//根据已经确定的记录 和 map,找出没确定的中最小的记录Node minNode = getMinDistanceAndUnSelectNode(distanceMap, selectedNodes);while (minNode != null) {int distance = distanceMap.get(minNode);for (Edge edge : minNode.edges) {Node toNode = edge.to;if (!distanceMap.containsKey(toNode)) {distanceMap.put(toNode, distance + edge.weight);} else {//edge.weight + distance 当前边的权重 + 我此时当做跳点的距离。//distanceMap.get(toNode) 已经存在的距离distanceMap.put(toNode, Math.min(distanceMap.get(toNode), (edge.weight + distance)));}}//所有的边都已经遍历完,这个点可以确定了,放到确定的集合中。selectedNodes.add(minNode);//再次获取最小的记录minNode = getMinDistanceAndUnSelectNode(distanceMap, selectedNodes);}return distanceMap;}public static Node getMinDistanceAndUnSelectNode(HashMap<Node, Integer> distanceMap, HashSet<Node> selectedNode) {Node minNode = null;int minDistance = Integer.MAX_VALUE;for (Map.Entry<Node, Integer> entry : distanceMap.entrySet()) {Node node = entry.getKey();int distance = entry.getValue();if (!selectedNode.contains(node) && distance < minDistance) {minDistance = distance;minNode = node;}}return minNode;}

相关文章:

迪瑞克斯拉算法

迪锐克斯拉算法 简单来说就是在有向图中&#xff0c;给定一个图中具体的出发点&#xff0c;从这个点出发能够到达的所有的点&#xff0c;每个点的最短距离是多少。到不了的点&#xff0c;距离则是正无穷。有向&#xff0c;无负权重&#xff0c;可以有环。 所以说&#xff0c;迪…...

数据结构:力扣OJ题(每日一练)

目录 题一&#xff1a;环形链表 思路一&#xff1a; 题二&#xff1a;复制带随机指针的链表 思路一&#xff1a; 本人实力有限可能对一些地方解释的不够清晰&#xff0c;可以自己尝试读代码&#xff0c;望海涵&#xff01; 题一&#xff1a;环形链表 给定一个链表的头节点…...

【论文阅读】基于深度学习的时序预测——Informer

系列文章链接 论文一&#xff1a;2020 Informer&#xff1a;长时序数据预测 论文二&#xff1a;2021 Autoformer&#xff1a;长序列数据预测 论文三&#xff1a;2022 FEDformer&#xff1a;长序列数据预测 论文四&#xff1a;2022 Non-Stationary Transformers&#xff1a;非平…...

机器学习 | Python实现GBDT梯度提升树模型设计

机器学习 | Python实现GBDT梯度提升树模型设计 目录 机器学习 | Python实现GBDT梯度提升树模型设计基本介绍模型描述模型使用参考资料基本介绍 机器学习 | Python实现GBDT梯度提升树模型设计。梯度提升树(Grandient Boosting)是提升树(Boosting Tree)的一种改进算法,GBDT也…...

elementUi表单恢复至初始状态并不触发表单验证

elementUi表单恢复至初始状态并不触发表单验证 1.场景再现2.解决方法 1.场景再现 左侧是树形列表&#xff0c;右侧是显示节点的详情&#xff0c;点击按钮应该就是新增一个规则的意思&#xff0c;表单内容是没有改变的&#xff0c;所以就把需要把表单恢复至初始状态并不触发表单…...

大模型相关知识

一. embedding 简单来说&#xff0c;embedding就是用一个低维的向量表示一个物体&#xff0c;可以是一个词&#xff0c;或是一个商品&#xff0c;或是一个电影等等。这个embedding向量的性质是能使距离相近的向量对应的物体有相近的含义&#xff0c;比如 Embedding(复仇者联盟)…...

无法在 macOS Ventura 上启动 Multipass

异常信息 ➜ ~ sudo multipass authenticate Please enter passphrase: authenticate failed: Passphrase is not set. Please multipass set local.passphrase with a trusted client. ➜ ~ multipass set local.passphrase Please enter passphrase: Please re-enter…...

算法通关村第六关——原来如此简单

层次遍历&#xff1a;又叫广度优先遍历。就是从根节点开始&#xff0c;先访问根节点下面一层全部元素&#xff0c;再访问之后的层次&#xff0c;直到访问完二叉树的最后一层。 我们先看一下基础的层次遍历题&#xff0c;力扣102题&#xff1a;给你一个二叉树&#xff0c;请你返…...

企业权限管理(八)-登陆使用数据库认证

Spring Security 使用数据库认证 在 Spring Security 中如果想要使用数据进行认证操作&#xff0c;有很多种操作方式&#xff0c;这里我们介绍使用 UserDetails 、 UserDetailsService来完成操作。 UserDetails public interface UserDetails extends Serializable { Collecti…...

第一百二十五天学习记录:C++提高:STL-deque容器(下)(黑马教学视频)

deque插入和删除 功能描述&#xff1a; 向deque容器中插入和删除数据 函数原型&#xff1a; 两端插入操作&#xff1a; push_back(elem); //在容器尾部添加一个数据 push_front(elem); //在容器头部插入一个数据 pop_back(); //删除容器最后一个数据 pop_front(); //删除容器…...

案例12 Spring MVC入门案例

网页输入http://localhost:8080/hello&#xff0c;浏览器展示“Hello Spring MVC”。 1. 创建项目 选择Maven快速构建web项目&#xff0c;项目名称为case12-springmvc01。 2.配置Maven依赖 <?xml version"1.0" encoding"UTF-8"?><project xm…...

【React】精选10题

1.React Hooks带来了什么便利&#xff1f; React Hooks是React16.8版本中引入的新特性&#xff0c;它带来了许多便利。 更简单的状态管理 使用useState Hook可以在函数组件中方便地管理状态&#xff0c;避免了使用类组件时需要继承React.Component的繁琐操作。 避免使用类组件…...

VS Spy++进程信息获取

查看进程中窗口信息。 Spy使用介绍 Windows下的程序及热键监视神器——Spy Word进程获取...

Java课题笔记~ SpringMVC概述

1.1 SpringMVC简介 SpringMVC 也叫Spring web mvc。是Spring 框架的一部分&#xff0c;在Spring3.0 后发布的。 1.2 SpringMVC的优点 基于MVC 架构 基于 MVC 架构&#xff0c;功能分工明确。解耦合。 容易理解&#xff0c;上手快&#xff0c;使用简单 就可以开发一个注解…...

SOPC之NIOS Ⅱ遇到的问题

记录NIOS Ⅱ中遇到的报错 一、NIOS II中Eclipse头文件未找到 问题&#xff1a;Unresolved inclusion: "system.h"等 原因&#xff1a;编译器无法找到头文件所在路径 解决方法&#xff1a; 在文件夹中找到要添加的头文件&#xff0c;并记录下其路径&#xff0c;如…...

uniapp uni-datetime-picker 日期和光标靠右

如果想在uni-datetime-picker组件中将日期和光标靠右&#xff0c;您可以使用自定义样式来实现。首先&#xff0c;您需要在页面的样式文件中定义一个类&#xff0c;用于定制uni-datetime-picker组件的样式。例如&#xff0c;你可以在App.vue或者页面的样式文件中添加以下代码&am…...

关于axios请求中的GET、POST、PUT、DELETE的一些认知

这篇写的特别好。而本文主要从实习用途中展开&#xff0c;不专业。 浅谈HTTP中Get、Post、Put与Delete的区别 1、Get 1、目前Get禁止使用requestBody形式传递值&#xff0c;如果使用了&#xff0c;后端会一直报错&#xff0c;让你确认是否有传递参数。 2、举例&#xff0c;模…...

go-zero 是如何做路由管理的?

原文链接&#xff1a; go-zero 是如何做路由管理的&#xff1f; go-zero 是一个微服务框架&#xff0c;包含了 web 和 rpc 两大部分。 而对于 web 框架来说&#xff0c;路由管理是必不可少的一部分&#xff0c;那么本文就来探讨一下 go-zero 的路由管理是怎么做的&#xff0c…...

Springboot集成ip2region离线IP地名映射-修订版

title: Springboot集成ip2region离线IP地名映射 date: 2020-12-16 11:15:34 categories: springboot description: Springboot集成ip2region离线IP地名映射 1. 背景2. 集成 2.1. 步骤2.2. 样例2.3. 响应实例DataBlock2.4. 响应实例RegionAddress 3. 打开浏览器4. 源码地址&…...

智能驾驶系列报告之一:智能驾驶 ChatGPT时刻有望来临

原创 | 文 BFT机器人 L3 功能加速落地&#xff0c;政策标准有望明确 L2 发展日益成熟&#xff0c;L3 功能加速落地。根据市场监管总局发布的《汽车驾驶自动化分级》与 SAE发布的自动驾驶分级标准&#xff0c;自动驾驶主要分为 6 个级别&#xff08;0 级到 5 级&#xff0c;L0 …...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935&#xff0c;SRS管理页面端口是8080&#xff0c;可…...

深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏

一、引言 在深度学习中&#xff0c;我们训练出的神经网络往往非常庞大&#xff08;比如像 ResNet、YOLOv8、Vision Transformer&#xff09;&#xff0c;虽然精度很高&#xff0c;但“太重”了&#xff0c;运行起来很慢&#xff0c;占用内存大&#xff0c;不适合部署到手机、摄…...

mac:大模型系列测试

0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何&#xff0c;是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试&#xff0c;是可以跑通文章里面的代码。训练速度也是很快的。 注意…...

人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型

在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重&#xff0c;适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解&#xff0c;并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...