【解读Spikingjelly】使用单层全连接SNN识别MNIST
原文档:使用单层全连接SNN识别MNIST — spikingjelly alpha 文档
代码地址:完整的代码位于
activation_based.examples.lif_fc_mnist.pyGitHub - fangwei123456/spikingjelly: SpikingJelly is an open-source deep learning framework for Spiking Neural Network (SNN) based on PyTorch.
ZhengyuanGao/spikingjelly: 开源脉冲神经网络深度学习框架 - spikingjelly - OpenI - 启智AI开源社区提供普惠算力! (pcl.ac.cn)a
本文补充一些细节代码以解决运行报错问题,并提供可视化代码,解释核心代码作用以辅助SNN初学者快速入门!
目录
1.网络定义
2.主函数
2.1参数设置
2.2主循环
3.可视化
3.1准确率
3.2测试图片与发放脉冲
3.3脉冲发放与电压
4.完整代码
lif_fc_mnist.py(为减少运行耗时,迭代次数设置为1)
lif_fc_mnist_test.py
1.网络定义
class SNN(nn.Module):def __init__(self, tau):super().__init__()self.layer = nn.Sequential(layer.Flatten(),layer.Linear(28 * 28, 10, bias=False),neuron.LIFNode(tau=tau, surrogate_function=surrogate.ATan()),)def forward(self, x: torch.Tensor):return self.layer(x)
(1)super:继承父类torch.nn.Module的初始化方法
(2)Sequential:顺序方式连接网络结构,首先将输入展平为一维,定义全连接层,输入格式28*28,输出10个神经元。Neuron.LIFNode为脉冲神经元层,用于对全连接层的激活,指定膜时间常数与替代函数(解决不可导问题)
(3)forward:重写前向传播函数,返回网络输出结果
2.主函数
2.1参数设置
(1)使用命令行设置LIF神经网络的超参数
parser = argparse.ArgumentParser(description='LIF MNIST Training')parser.add_argument('-T', default=100, type=int, help='simulating time-steps')parser.add_argument('-device', default='cuda:0', help='device')parser.add_argument('-b', default=64, type=int, help='batch size')parser.add_argument('-epochs', default=100, type=int, metavar='N',help='number of total epochs to run')parser.add_argument('-j', default=4, type=int, metavar='N',help='number of data loading workers (default: 4)')
# 添加 default='./MNIST' 以解决无下载所需文件夹问题----------------------------------------parser.add_argument('-data-dir', type=str, default='./MNIST', help='root dir of MNIST dataset')
# -----------------------------------------------------------------------------------------parser.add_argument('-out-dir', type=str, default='./logs', help='root dir for saving logs and checkpoint')parser.add_argument('-resume', type =str, help='resume from the checkpoint path')parser.add_argument('-amp', action='store_true', help='automatic mixed precision training')parser.add_argument('-opt', type=str, choices=['sgd', 'adam'], default='adam', help='use which optimizer. SGD or Adam')parser.add_argument('-momentum', default=0.9, type=float, help='momentum for SGD')parser.add_argument('-lr', default=1e-3, type=float, help='learning rate')parser.add_argument('-tau', default=2.0, type=float, help='parameter tau of LIF neuron')
注:在代码上述标记位置添加 default='./MNIST' 以解决无下载所需文件夹问题
超参数含义如下图所示:

(2) 参数代入:是否自动混合精度训练(PyTorch的自动混合精度(AMP) - 知乎 (zhihu.com))
scaler = Noneif args.amp:scaler = amp.GradScaler()
(3)参数代入:优化器类型
optimizer = Noneif args.opt == 'sgd':optimizer = torch.optim.SGD(net.parameters(), lr=args.lr, momentum=args.momentum)elif args.opt == 'adam':optimizer = torch.optim.Adam(net.parameters(), lr=args.lr)else:raise NotImplementedError(args.opt)
(4)是否恢复断点训练(if args.resume:从断点处开始继续训练模型)
if args.resume:checkpoint = torch.load(args.resume, map_location='cpu')net.load_state_dict(checkpoint['net'])optimizer.load_state_dict(checkpoint['optimizer'])start_epoch = checkpoint['epoch'] + 1max_test_acc = checkpoint['max_test_acc']
(5)泊松编码
encoder = encoding.PoissonEncoder()
2.2主循环
(1)在主循环之前补充创建两个空数组,用于保存训练过程中的准确率,以便后续绘制曲线

(2)加载训练数据(测试数据代码大同小异,不另外分析)
for img, label in train_data_loader:optimizer.zero_grad()img = img.to(args.device)label = label.to(args.device)label_onehot = F.one_hot(label, 10).float()
- 循环读取训练数据,在每次循环前,清空优化器梯度
- 将img、label放置到GPU上训练
- 对标签进行独热编码,10个类别(独热编码(One-Hot Encoding) - 知乎 (zhihu.com))
(3)判断是否使用混合精度训练
if scaler is not None:with amp.autocast():out_fr = 0.for t in range(args.T):encoded_img = encoder(img)out_fr += net(encoded_img)out_fr = out_fr / args.Tloss = F.mse_loss(out_fr, label_onehot)scaler.scale(loss).backward()scaler.step(optimizer)scaler.update()else:out_fr = 0.for t in range(args.T):encoded_img = encoder(img)out_fr += net(encoded_img)out_fr = out_fr / args.Tloss = F.mse_loss(out_fr, label_onehot)loss.backward()optimizer.step()
如果使用:
- 用amp.autocast()包裹前向计算,使其在浮点16位计算
- 用scaler缩放损失scale(loss)
- 损失回传
- 通过scaler更新优化器
如果不使用混合精度:
- 正常进行前向计算
- 损失函数计算
- 反向传播
- 优化器更新
(4)重置网络
functional.reset_net(net)
SNN中的脉冲神经元在前向传播时会积累状态,比如膜电位、释放的脉冲等。重置可以清空这些状态,使网络回到初始状态。
(5)在下图位置添加对应代码保存.npy文件

3.可视化
3.1准确率
在examples文件夹下创建一个.py文件,用于对结果的可视化

代码如下:
import numpy as np
import matplotlib.pyplot as plttest_accs = np.load("./train_accs.npy")
x = []
y = []
maxy = -1
maxx = -1
for t in range(len(test_accs)):if test_accs[t] > maxy:maxy = test_accs[t]maxx = tx.append(t)y.append(test_accs[t])
plt.plot(x, y)
# plt.plot(test_accs)
plt.xlabel('Iteration')
plt.ylabel('Acc')
plt.title('Train Acc')
plt.annotate(r'(%d,%f)' % (maxx, maxy), xy=(maxx, maxy), xycoords='data', xytext=(+10, +20), fontsize=16,arrowprops=dict(arrowstyle='->'), textcoords='offset points')
plt.show()
test_accs = np.load("./test_accs.npy")
x = []
y = []
maxy = -1
maxx = -1
for t in range(len(test_accs)):if test_accs[t] > maxy:maxy = test_accs[t]maxx = tx.append(t)y.append(test_accs[t])
# plt.plot(x, y)
plt.plot(test_accs)
plt.xlabel('Epoch')
plt.ylabel('Acc')
plt.title('Test Acc')
plt.annotate(r'(%d,%f)' % (maxx, maxy), xy=(maxx, maxy), xycoords='data', xytext=(+10, +20), fontsize=16,arrowprops=dict(arrowstyle='->'), textcoords='offset points')
plt.show()
效果:


3.2测试图片与发放脉冲
添加如下代码至main()函数的末尾:
img = img.cpu().numpy().reshape(28, 28)plt.subplot(221)plt.imshow(img)plt.subplot(222)plt.imshow(img, cmap='gray')plt.subplot(223)plt.imshow(img, cmap=plt.cm.gray)plt.subplot(224)plt.imshow(img, cmap=plt.cm.gray_r)plt.show()
效果:

![]()
3.3脉冲发放与电压
新建文件夹,运行如下代码:
test_spike = np.load("./s_t_array.npy")test_mem = np.load('./v_t_array.npy')visualizing.plot_2d_heatmap(array=np.asarray(test_mem), title='Membrane Potentials', xlabel='Simulating Step',ylabel='Neuron Index', int_x_ticks=True, x_max=100, dpi=200)visualizing.plot_1d_spikes(spikes=np.asarray(test_spike), title='Membrane Potentials', xlabel='Simulating Step',ylabel='Neuron Index', dpi=200)plt.show()
效果:

4.完整代码
lif_fc_mnist.py(为减少运行耗时,迭代次数设置为1)
import os
import time
import argparse
import sys
import datetimeimport torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data
from torch.cuda import amp
from torch.utils.tensorboard import SummaryWriter
import torchvision
import numpy as np
import matplotlib.pyplot as pltfrom spikingjelly.activation_based import neuron, encoding, functional, surrogate, layerclass SNN(nn.Module):def __init__(self, tau):super().__init__()self.layer = nn.Sequential(layer.Flatten(),layer.Linear(28 * 28, 10, bias=False),neuron.LIFNode(tau=tau, surrogate_function=surrogate.ATan()),)def forward(self, x: torch.Tensor):return self.layer(x)def main():''':return: None* :ref:`API in English <lif_fc_mnist.main-en>`.. _lif_fc_mnist.main-cn:使用全连接-LIF的网络结构,进行MNIST识别。\n这个函数会初始化网络进行训练,并显示训练过程中在测试集的正确率。* :ref:`中文API <lif_fc_mnist.main-cn>`.. _lif_fc_mnist.main-en:The network with FC-LIF structure for classifying MNIST.\nThis function initials the network, starts trainingand shows accuracy on test dataset.'''parser = argparse.ArgumentParser(description='LIF MNIST Training')parser.add_argument('-T', default=100, type=int, help='simulating time-steps')parser.add_argument('-device', default='cuda:0', help='device')parser.add_argument('-b', default=64, type=int, help='batch size')# 100parser.add_argument('-epochs', default=1, type=int, metavar='N',help='number of total epochs to run')parser.add_argument('-j', default=4, type=int, metavar='N',help='number of data loading workers (default: 4)')parser.add_argument('-data-dir', type=str, default='./MNIST', help='root dir of MNIST dataset')parser.add_argument('-out-dir', type=str, default='./logs', help='root dir for saving logs and checkpoint')parser.add_argument('-resume', type =str, help='resume from the checkpoint path')parser.add_argument('-amp', action='store_true', help='automatic mixed precision training')parser.add_argument('-opt', type=str, choices=['sgd', 'adam'], default='adam', help='use which optimizer. SGD or Adam')parser.add_argument('-momentum', default=0.9, type=float, help='momentum for SGD')parser.add_argument('-lr', default=1e-3, type=float, help='learning rate')parser.add_argument('-tau', default=2.0, type=float, help='parameter tau of LIF neuron')args = parser.parse_args()print(args)net = SNN(tau=args.tau)print(net)net.to(args.device)# 初始化数据加载器train_dataset = torchvision.datasets.MNIST(root=args.data_dir,train=True,transform=torchvision.transforms.ToTensor(),download=True)test_dataset = torchvision.datasets.MNIST(root=args.data_dir,train=False,transform=torchvision.transforms.ToTensor(),download=True)train_data_loader = data.DataLoader(dataset=train_dataset,batch_size=args.b,shuffle=True,drop_last=True,num_workers=args.j,pin_memory=True)test_data_loader = data.DataLoader(dataset=test_dataset,batch_size=args.b,shuffle=False,drop_last=False,num_workers=args.j,pin_memory=True)scaler = Noneif args.amp:scaler = amp.GradScaler()start_epoch = 0max_test_acc = -1optimizer = Noneif args.opt == 'sgd':optimizer = torch.optim.SGD(net.parameters(), lr=args.lr, momentum=args.momentum)elif args.opt == 'adam':optimizer = torch.optim.Adam(net.parameters(), lr=args.lr)else:raise NotImplementedError(args.opt)if args.resume:checkpoint = torch.load(args.resume, map_location='cpu')net.load_state_dict(checkpoint['net'])optimizer.load_state_dict(checkpoint['optimizer'])start_epoch = checkpoint['epoch'] + 1max_test_acc = checkpoint['max_test_acc']out_dir = os.path.join(args.out_dir, f'T{args.T}_b{args.b}_{args.opt}_lr{args.lr}')if args.amp:out_dir += '_amp'if not os.path.exists(out_dir):os.makedirs(out_dir)print(f'Mkdir {out_dir}.')with open(os.path.join(out_dir, 'args.txt'), 'w', encoding='utf-8') as args_txt:args_txt.write(str(args))writer = SummaryWriter(out_dir, purge_step=start_epoch)with open(os.path.join(out_dir, 'args.txt'), 'w', encoding='utf-8') as args_txt:args_txt.write(str(args))args_txt.write('\n')args_txt.write(' '.join(sys.argv))encoder = encoding.PoissonEncoder()# 创建保存数组train_accs = []test_accs = []for epoch in range(start_epoch, args.epochs):start_time = time.time()net.train()train_loss = 0train_acc = 0train_samples = 0for img, label in train_data_loader:optimizer.zero_grad()img = img.to(args.device)label = label.to(args.device)label_onehot = F.one_hot(label, 10).float()if scaler is not None:with amp.autocast():out_fr = 0.for t in range(args.T):encoded_img = encoder(img)out_fr += net(encoded_img)out_fr = out_fr / args.Tloss = F.mse_loss(out_fr, label_onehot)scaler.scale(loss).backward()scaler.step(optimizer)scaler.update()else:out_fr = 0.for t in range(args.T):encoded_img = encoder(img)out_fr += net(encoded_img)out_fr = out_fr / args.Tloss = F.mse_loss(out_fr, label_onehot)loss.backward()optimizer.step()train_samples += label.numel()train_loss += loss.item() * label.numel()train_acc += (out_fr.argmax(1) == label).float().sum().item()functional.reset_net(net)train_time = time.time()train_speed = train_samples / (train_time - start_time)train_loss /= train_samplestrain_acc /= train_sampleswriter.add_scalar('train_loss', train_loss, epoch)writer.add_scalar('train_acc', train_acc, epoch)net.eval()test_loss = 0test_acc = 0test_samples = 0with torch.no_grad():for img, label in test_data_loader:img = img.to(args.device)label = label.to(args.device)label_onehot = F.one_hot(label, 10).float()out_fr = 0.for t in range(args.T):encoded_img = encoder(img)out_fr += net(encoded_img)out_fr = out_fr / args.Tloss = F.mse_loss(out_fr, label_onehot)test_samples += label.numel()test_loss += loss.item() * label.numel()test_acc += (out_fr.argmax(1) == label).float().sum().item()functional.reset_net(net)test_time = time.time()test_speed = test_samples / (test_time - train_time)test_loss /= test_samplestest_acc /= test_sampleswriter.add_scalar('test_loss', test_loss, epoch)writer.add_scalar('test_acc', test_acc, epoch)save_max = Falseif test_acc > max_test_acc:max_test_acc = test_accsave_max = Truecheckpoint = {'net': net.state_dict(),'optimizer': optimizer.state_dict(),'epoch': epoch,'max_test_acc': max_test_acc}if save_max:torch.save(checkpoint, os.path.join(out_dir, 'checkpoint_max.pth'))torch.save(checkpoint, os.path.join(out_dir, 'checkpoint_latest.pth'))print(args)print(out_dir)print(f'epoch ={epoch}, train_loss ={train_loss: .4f}, train_acc ={train_acc: .4f}, test_loss ={test_loss: .4f}, test_acc ={test_acc: .4f}, max_test_acc ={max_test_acc: .4f}')print(f'train speed ={train_speed: .4f} images/s, test speed ={test_speed: .4f} images/s')print(f'escape time = {(datetime.datetime.now() + datetime.timedelta(seconds=(time.time() - start_time) * (args.epochs - epoch))).strftime("%Y-%m-%d %H:%M:%S")}\n')# 保存数据至数组train_accs = np.append(train_accs, train_acc)test_accs = np.append(test_accs, test_acc)# print(train_accs)# 写入npynp.save("./test_accs.npy", test_accs)np.save("./train_accs.npy", train_accs)# 保存绘图用数据net.eval()# 注册钩子output_layer = net.layer[-1] # 输出层output_layer.v_seq = []output_layer.s_seq = []def save_hook(m, x, y):m.v_seq.append(m.v.unsqueeze(0))m.s_seq.append(y.unsqueeze(0))output_layer.register_forward_hook(save_hook)with torch.no_grad():img, label = test_dataset[0]img = img.to(args.device)out_fr = 0.for t in range(args.T):encoded_img = encoder(img)out_fr += net(encoded_img)out_spikes_counter_frequency = (out_fr / args.T).cpu().numpy()print(f'Firing rate: {out_spikes_counter_frequency}')output_layer.v_seq = torch.cat(output_layer.v_seq)output_layer.s_seq = torch.cat(output_layer.s_seq)v_t_array = output_layer.v_seq.cpu().numpy().squeeze() # v_t_array[i][j]表示神经元i在j时刻的电压值np.save("v_t_array.npy",v_t_array)s_t_array = output_layer.s_seq.cpu().numpy().squeeze() # s_t_array[i][j]表示神经元i在j时刻释放的脉冲,为0或1np.save("s_t_array.npy",s_t_array)img = img.cpu().numpy().reshape(28, 28)plt.subplot(221)plt.imshow(img)plt.subplot(222)plt.imshow(img, cmap='gray')plt.subplot(223)plt.imshow(img, cmap=plt.cm.gray)plt.subplot(224)plt.imshow(img, cmap=plt.cm.gray_r)plt.show()if __name__ == '__main__':main()
lif_fc_mnist_test.py
import numpy as np
import matplotlib.pyplot as plttest_accs = np.load("./train_accs.npy")
x = []
y = []
maxy = -1
maxx = -1
for t in range(len(test_accs)):if test_accs[t] > maxy:maxy = test_accs[t]maxx = tx.append(t)y.append(test_accs[t])
plt.plot(x, y)
# plt.plot(test_accs)
plt.xlabel('Iteration')
plt.ylabel('Acc')
plt.title('Train Acc')
plt.annotate(r'(%d,%f)' % (maxx, maxy), xy=(maxx, maxy), xycoords='data', xytext=(+10, +20), fontsize=16,arrowprops=dict(arrowstyle='->'), textcoords='offset points')
plt.show()
test_accs = np.load("./test_accs.npy")
x = []
y = []
maxy = -1
maxx = -1
for t in range(len(test_accs)):if test_accs[t] > maxy:maxy = test_accs[t]maxx = tx.append(t)y.append(test_accs[t])
# plt.plot(x, y)
plt.plot(test_accs)
plt.xlabel('Epoch')
plt.ylabel('Acc')
plt.title('Test Acc')
plt.annotate(r'(%d,%f)' % (maxx, maxy), xy=(maxx, maxy), xycoords='data', xytext=(+10, +20), fontsize=16,arrowprops=dict(arrowstyle='->'), textcoords='offset points')
plt.show()
相关文章:
【解读Spikingjelly】使用单层全连接SNN识别MNIST
原文档:使用单层全连接SNN识别MNIST — spikingjelly alpha 文档 代码地址:完整的代码位于activation_based.examples.lif_fc_mnist.py GitHub - fangwei123456/spikingjelly: SpikingJelly is an open-source deep learning framework for Spiking Neur…...
穿越数字奇境:探寻元宇宙中的科技奇迹
随着科技的迅速发展,元宇宙正逐渐成为一个备受关注的话题,它不仅是虚拟现实的延伸,更是将现实世界与数字世界融合的未来典范。在这个神秘而充满活力的数字奇境中,涉及了众多领域和技术,为我们呈现出了一个无限的创新和…...
2024」预备研究生mem-阴影图形
一、阴影图形 二、课后题...
【设计模式】责任链模式
顾名思义,责任链模式(Chain of Responsibility Pattern)为请求创建了一个接收者对象的链。这种模式给予请求的类型,对请求的发送者和接收者进行解耦。这种类型的设计模式属于行为型模式。 在这种模式中,通常每个接收者…...
解密人工智能:线性回归 | 逻辑回归 | SVM
文章目录 1、机器学习算法简介1.1 机器学习算法包含的两个步骤1.2 机器学习算法的分类 2、线性回归算法2.1 线性回归的假设是什么?2.2 如何确定线性回归模型的拟合优度?2.3 如何处理线性回归中的异常值? 3、逻辑回归算法3.1 什么是逻辑函数?…...
【FFMPEG应用篇】使用FFmpeg的常见问题
拼接视频的问题 在使用ffmpeg进行视频拼接时,可能会遇到一些常见问题。以下是这些问题及其解决方法: 1. 视频格式不兼容:如果要拼接的视频格式不同,ffmpeg可能会报错。解决方法是使用ffmpeg进行格式转换,将所有视频转…...
(vue)获取对象的键遍历,同时循环el-tab页展示key及内容
(vue)获取对象的键遍历,同时循环el-tab页展示key及内容 效果: 数据结构: "statusData": {"订购广度": [ {"id": 11, "ztName": "广", …...
【严重】Smartbi未授权设置Token回调地址获取管理员权限
漏洞描述 Smartbi是一款商业智能应用,提供了数据集成、分析、可视化等功能,帮助用户理解和使用他们的数据进行决策。 在 Smartbi 受影响版本中存在Token回调地址漏洞,未授权的攻击者可以通过向目标系统发送POST请求/smartbix/api/monitor/s…...
北京鸟巢门票多少,里面有什么好玩的
北京鸟巢门票多少,里面有什么好玩的 北京鸟巢的门票是100元,里面有很多运动设施,“鸟巢”结构设计奇特新颖,而这次搭建它的钢结构的Q460也有很多独到之处:Q460是一种低合金高强度钢,它在受力强度达到460兆帕…...
4路光栅尺磁栅尺编码器5MHz高速差分信号转Modbus TCP网络模块 YL97
特点: ● 光栅尺磁栅尺解码转换成标准Modbus TCP协议 ● 光栅尺5V差分信号直接输入,4倍频计数 ● 模块可以输出5V的电源给光栅尺供电 ● 高速光栅尺磁栅尺计数,频率可达5MHz ● 支持4个光栅尺同时计数,可识别正反转 ● 可网…...
金蝶云星空对接打通旺店通·企业奇门组装拆卸单查询接口与创建其他出库单接口
金蝶云星空对接打通旺店通企业奇门组装拆卸单查询接口与创建其他出库单接口 编辑 源系统:金蝶云星空 金蝶K/3Cloud(金蝶云星空)是移动互联网时代的新型ERP,是基于WEB2.0与云技术的新时代企业管理服务平台。金蝶K/3Cloud围绕着“生态、人人…...
卫星--夏令营
几何问题:就是用几何数学知识解题即可 但是越是数学编程题,越容易忽略数学题中的细节 1.地球半径你算进去了吗? 2.sin三角函数,M_PI标准圆周率在cmath文件里 3.有可能给出的夹角超过180呢,没给数据要求,就要自己考…...
Kafka的下载安装以及使用
一、Kafka下载 下载地址:https://kafka.apache.org/downloads 二、Kafka安装 因为选择下载的是 .zip 文件,直接跳过安装,一步到位。 选择在任一磁盘创建空文件夹(不要使用中文路径),解压之后把文件夹内容…...
数据库相关面试题
巩固基础,砥砺前行 。 只有不断重复,才能做到超越自己。 能坚持把简单的事情做到极致,也是不容易的。 mysql怎么优化 : MySQL的优化可以从以下几个方面入手: 数据库设计优化:合理设计表结构,选择合适的数…...
Ubuntu常用配置
文章目录 1. 安装VMware虚拟机软件2. 下载Ubuntu镜像3. 创建Ubuntu虚拟机4. 设置屏幕分辨率5. 更改系统语言为中文6. 切换中文输入法7. 修改系统时间8. 修改锁屏时间9. 通过系统自带的应用商店安装软件10. 安装JDK11. 安装 IntelliJ IDEA12. 将左侧任务栏自动隐藏13. 安装docke…...
win10MySQLServer安装过程+解决MySQL服务无法启动问题
本次使用的版本是 Server version: 8.0.33 MySQL Community Server 安装详解 首先去官网下载社区版,比如我用的是mysql-8.0.33-winx64.zip,解压到文件夹:D:\Program Files\mysql-8.0.33-winx64 用管理员身份运行cmd,进到bin目录…...
网络:CISCO、Huawei、H3C命令对照
思科、华为、锐捷命令对照表 编号思科华为锐捷命令解释1 2writesavesave保存3456 如果你所处的视图为非系统视图,需要查看配置的时候,需要在该配置命令前加do。 在特定的视图之下,有对应的特定命令。例如,在接口视图下的ip addre…...
题目:2319.判断矩阵是否是 X 矩阵
题目来源: leetcode题目,网址:2319. 判断矩阵是否是一个 X 矩阵 - 力扣(LeetCode) 解题思路: 遍历矩阵,对于每一个节点,先判断是否处于主对角线或副对角线上,然后判…...
2023年大厂前端面试题汇总
一、58同城前端面试题27道 1. css盒模型 2. css画三角形 3. 盒子水平垂直居中(所有方式) 4. 重绘、重排 重绘就是重新绘制(repaint):是在一个元素的外观被改变所触发的浏览器行为,浏览器会根据元素的新属性…...
如何在Linux中查找Nginx安装目录
一、通过which命令查找 $ which nginx /usr/sbin/nginxwhich命令会在系统环境变量PATH中查找nginx可执行文件,并返回路径。因此,通过which命令可以很容易地找到系统中nginx的安装位置。 二、通过whereis命令查找 $ whereis nginx nginx: /usr/sbin/ng…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
STM32F4基本定时器使用和原理详解
STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...
抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...
学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
Java入门学习详细版(一)
大家好,Java 学习是一个系统学习的过程,核心原则就是“理论 实践 坚持”,并且需循序渐进,不可过于着急,本篇文章推出的这份详细入门学习资料将带大家从零基础开始,逐步掌握 Java 的核心概念和编程技能。 …...
